Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Oscillatory and Excitable Dynamics in an Opinion Model with Group Opinions (2408.13336v2)

Published 23 Aug 2024 in physics.soc-ph, cs.SI, math.DS, and nlin.AO

Abstract: In traditional models of opinion dynamics, each agent in a network has an opinion and changes in opinions arise from pairwise (i.e., dyadic) interactions between agents. However, in many situations, groups of individuals possess a collective opinion that can differ from the opinions of its constituent individuals. In this paper, we study the effects of group opinions on opinion dynamics. We formulate a hypergraph model in which both individual agents and groups of 3 agents have opinions, and we examine how opinions evolve through both dyadic interactions and group memberships. In some parameter regimes, we find that the presence of group opinions can lead to oscillatory and excitable opinion dynamics. In the oscillatory regime, the mean opinion of the agents in a network has self-sustained oscillations. In the excitable regime, finite-size effects create large but short-lived opinion swings (as in social fads). We develop a mean-field approximation of our model and obtain good agreement with direct numerical simulations. We also show -- both numerically and via our mean-field description -- that oscillatory dynamics occur only when the number of dyadic and polyadic interactions per agent are not completely correlated. Our results illustrate how polyadic structures, such as groups of agents, can have important effects on collective opinion dynamics.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com