Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Opinion Dynamics for Utility Maximizing Agents: Exploring the Impact of the Resource Penalty (2404.04912v2)

Published 7 Apr 2024 in eess.SY, cs.GT, cs.MA, cs.SI, and cs.SY

Abstract: We propose a continuous-time nonlinear model of opinion dynamics with utility-maximizing agents connected via a social influence network. A distinguishing feature of the proposed model is the inclusion of an opinion-dependent resource-penalty term in the utilities, which limits the agents from holding opinions of large magnitude. This model is applicable in scenarios where the opinions pertain to the usage of resources, such as money, time, computational resources etc. Each agent myopically seeks to maximize its utility by revising its opinion in the gradient ascent direction of its utility function, thus leading to the proposed opinion dynamics. We show that, for any arbitrary social influence network, opinions are ultimately bounded. For networks with weak antagonistic relations, we show that there exists a globally exponentially stable equilibrium using contraction theory. We establish conditions for the existence of consensus equilibrium and analyze the relative dominance of the agents at consensus. We also conduct a game-theoretic analysis of the underlying opinion formation game, including on Nash equilibria and on prices of anarchy in terms of satisfaction ratios. Additionally, we also investigate the oscillatory behavior of opinions in a two-agent scenario. Finally, simulations illustrate our findings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. J. R. French Jr, “A formal theory of social power.” Psychological Review, vol. 63, no. 3, p. 181, 1956.
  2. M. H. DeGroot, “Reaching a consensus,” Journal of the American Statistical Association, vol. 69, no. 345, pp. 118–121, 1974.
  3. R. P. Abelson, “Mathematical models of the distribution of attitudes under controversy,” Contributions to Mathematical Psychology, 1964.
  4. M. Taylor, “Towards a mathematical theory of influence and attitude change,” Human Relations, vol. 21, no. 2, pp. 121–139, 1968.
  5. N. E. Friedkin and E. C. Johnsen, “Social influence and opinions,” Journal of Mathematical Sociology, vol. 15, no. 3-4, pp. 193–206, 1990.
  6. R. Hegselmann and U. Krause, “Opinion dynamics and bounded confidence models, analysis, and simulation,” Journal of Artificial Societies and Social Simulation, vol. 5, no. 3, 2002.
  7. C. Altafini, “Consensus problems on networks with antagonistic interactions,” IEEE Transactions on Automatic Control, vol. 58, no. 4, pp. 935–946, 2013.
  8. G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch, “Mixing beliefs among interacting agents,” Advances in Complex Systems, vol. 3, no. 01n04, pp. 87–98, 2000.
  9. A. V. Proskurnikov and R. Tempo, “A tutorial on modeling and analysis of dynamic social networks. Part I,” Annual Reviews in Control, vol. 43, pp. 65–79, 2017.
  10. ——, “A tutorial on modeling and analysis of dynamic social networks. Part II,” Annual Reviews in Control, vol. 45, pp. 166–190, 2018.
  11. B. D. Anderson, F. Dabbene, A. V. Proskurnikov, C. Ravazzi, and M. Ye, “Dynamical networks of social influence: Modern trends and perspectives,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 17 616–17 627, 2020.
  12. Z. Meng, G. Shi, K. H. Johansson, M. Cao, and Y. Hong, “Behaviors of networks with antagonistic interactions and switching topologies,” Automatica, vol. 73, pp. 110–116, 2016.
  13. J. Liu, X. Chen, T. Başar, and M. A. Belabbas, “Exponential convergence of the discrete-and continuous-time altafini models,” IEEE Transactions on Automatic Control, vol. 62, no. 12, pp. 6168–6182, 2017.
  14. P. Cisneros-Velarde, K. S. Chan, and F. Bullo, “Polarization and fluctuations in signed social networks,” IEEE Transactions on Automatic Control, vol. 66, no. 8, pp. 3789–3793, 2021.
  15. M. Ye, Y. Qin, A. Govaert, B. D. Anderson, and M. Cao, “An influence network model to study discrepancies in expressed and private opinions,” Automatica, vol. 107, pp. 371–381, 2019.
  16. P. Jia, A. Mirtabatabaei, N. E. Friedkin, and F. Bullo, “Opinion dynamics and the evolution of social power in influence networks,” SIAM Review, vol. 57, no. 3, pp. 367–397, 2015.
  17. M. Ye and B. D. Anderson, “Modelling of individual behaviour in the degroot–friedkin self-appraisal dynamics on social networks,” in 2019 18th European Control Conference (ECC), 2019, pp. 2011–2017.
  18. Y. Tian, P. Jia, A. MirTabatabaei, L. Wang, N. E. Friedkin, and F. Bullo, “Social power evolution in influence networks with stubborn individuals,” IEEE Transactions on Automatic Control, vol. 67, no. 2, pp. 574–588, 2022.
  19. J. Ghaderi and R. Srikant, “Opinion dynamics in social networks with stubborn agents: Equilibrium and convergence rate,” Automatica, vol. 50, no. 12, pp. 3209–3215, 2014.
  20. D. Bindel, J. Kleinberg, and S. Oren, “How bad is forming your own opinion?” Games and Economic Behavior, vol. 92, pp. 248–265, 2015.
  21. S. R. Etesami, “Open-loop equilibrium strategies for dynamic influence maximization game over social networks,” IEEE Control Systems Letters, vol. 6, pp. 1496–1500, 2022.
  22. S. R. Etesami and T. Başar, “Game-theoretic analysis of the Hegselmann-Krause model for opinion dynamics in finite dimensions,” IEEE Transactions on Automatic Control, vol. 60, no. 7, pp. 1886–1897, 2015.
  23. L. Zino, M. Ye, and M. Cao, “A two-layer model for coevolving opinion dynamics and collective decision-making in complex social systems,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 30, no. 8, p. 083107, 2020.
  24. S. Park, A. Bizyaeva, M. Kawakatsu, A. Franci, and N. E. Leonard, “Tuning cooperative behavior in games with nonlinear opinion dynamics,” IEEE Control Systems Letters, vol. 6, pp. 2030–2035, 2022.
  25. S. R. Etesami, S. Bolouki, A. Nedić, T. Başar, and H. V. Poor, “Influence of conformist and manipulative behaviors on public opinion,” IEEE Transactions on Control of Network Systems, vol. 6, no. 1, pp. 202–214, 2019.
  26. P. Wankhede, N. Mandal, and P. Tallapragada, “Opinion dynamics for utility maximizing agents with heterogeneous resources,” in 2023 American Control Conference (ACC), 2023, pp. 1054–1061.
  27. R. P. Abelson and J. C. Miller, “Negative persuasion via personal insult,” Journal of Experimental Social Psychology, vol. 3, no. 4, pp. 321–333, 1967.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Prashil Wankhede (1 paper)
  2. Nirabhra Mandal (5 papers)
  3. Pavankumar Tallapragada (25 papers)
  4. Sonia Martínez (16 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com