Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

Self-Supervised Iterative Refinement for Anomaly Detection in Industrial Quality Control (2408.11561v2)

Published 21 Aug 2024 in cs.CV and cs.LG

Abstract: This study introduces the Iterative Refinement Process (IRP), a robust anomaly detection methodology designed for high-stakes industrial quality control. The IRP enhances defect detection accuracy through a cyclic data refinement strategy, iteratively removing misleading data points to improve model performance and robustness. We validate the IRP's effectiveness using two benchmark datasets, Kolektor SDD2 (KSDD2) and MVTec AD, covering a wide range of industrial products and defect types. Our experimental results demonstrate that the IRP consistently outperforms traditional anomaly detection models, particularly in environments with high noise levels. This study highlights the IRP's potential to significantly enhance anomaly detection processes in industrial settings, effectively managing the challenges of sparse and noisy data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.