Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some model theory of quadratic geometries (2408.10196v1)

Published 19 Aug 2024 in math.LO

Abstract: Orthogonal spaces are vector spaces together with a quadratic form whose associated bilinear form is non-degenerate. Over fields of characteristic two, there are many quadratic forms associated to a given bilinear form and quadratic geometries are structures that encode a vector space over a field of characteristic 2 with a non-degenerate bilinear form together with a space of associated quadratic forms. These structures over finite fields of characteristic 2 form an important part of the basic geometries that appear in the Lie coordinatizable structures of Cherlin and Hrushovski. We (a) describe the respective model companions of the theory of orthogonal spaces and the theory of quadratic geometries and (b) classify the pseudo-finite completions of these theories. We also (c) give a neostability-theoretic classification of the model companions and these pseudo-finite completions. This is a small step towards understanding the analogue of the Cherlin-Hrushovski theory of Lie coordinatizable structures in a setting where the involved fields may be pseudo-finite.

Citations (1)

Summary

We haven't generated a summary for this paper yet.