Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bilinear spaces over a fixed field are simple unstable (2203.04844v3)

Published 9 Mar 2022 in math.LO

Abstract: We study the model theory of vector spaces with a bilinear form over a fixed field. For finite fields this can be, and has been, done in the classical framework of full first-order logic. For infinite fields we need different logical frameworks. First we take a category-theoretic approach, which requires very little set-up. We show that linear independence forms a simple unstable independence relation. With some more work we then show that we can also work in the framework of positive logic, which is much more powerful than the category-theoretic approach and much closer to the classical framework of full first-order logic. We fully characterise the existentially closed models of the arising positive theory. Using the independence relation from before we conclude that the theory is simple unstable, in the sense that dividing has local character but there are many distinct types. We also provide positive version of what is commonly known as the Ryll-Nardzewski theorem for $\omega$-categorical theories in full first-order logic, from which we conclude that bilinear spaces over a countable field are $\omega$-categorical.

Summary

We haven't generated a summary for this paper yet.