Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

Computation of the index on orbifold from the Atiyah-Segal-Singer fixed point theorem (2408.09758v1)

Published 19 Aug 2024 in hep-th, math-ph, and math.MP

Abstract: We investigate the independent chiral zero modes on the orbifolds from the Atiyah-Segal-Singer fixed point theorem. The required information for this calculation includes the fixed points of the orbifold and the manner in which the spatial symmetries act on these points, unlike previous studies that necessitated the calculation of zero modes. Since the fixed point theorem can be applied to any fermionic theory on any orbifold, it allows us to determine the index even on orbifolds where the calculation of zero modes is challenging or in the presence of non-trivial gauge configurations. We compute the indices on the $T{2}/ \mathbb{Z}_N\,(N=2,3,4,6)$ and $T{4}/ \mathbb{Z}_N\,(N=2,3,5)$ as examples. Furthermore, we also attempt to compute the indices on a Coxeter orbifold related to the $D_4$ lattice.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.