Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models (2408.08545v4)

Published 16 Aug 2024 in cs.CL

Abstract: LLMs have been widely adopted due to their remarkable performance across various applications, driving the accelerated development of a large number of diverse models. However, these individual LLMs show limitations in generalization and performance on complex tasks due to inherent training biases, model size constraints, and the quality or diversity of pre-training datasets. A promising direction is to efficiently harness the diverse capabilities of LLMs to overcome these individual limitations. To address these limitations, we introduce a novel LLM selection algorithm called SelectLLM, which efficiently directs input queries to the most suitable subset of LLMs from a large pool, ensuring that the selected models collectively provide accurate responses. SelectLLM employs a multi-label classifier and policy based on the classifier's predictions and confidence scores in selecting an optimal, query-aware, and lightweight subset of LLMs. Our findings indicate that the proposed model outperforms existing ensemble-based baselines and achieves competitive performance with similarly sized top-performing LLMs while maintaining efficiency. Specifically, it achieves a huge reduction in inference latency on two challenging reasoning benchmarks: 13\% on GSM8K and 70\% on MMLU, compared to the top-performing baseline. Also, we establish a theoretical upper bound by an Oracle with LLMs and perform an in-depth linguistic analysis to understand the performance gap between the Oracle and SelectLLM.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com