Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Paraphrase and Aggregate with Large Language Models for Minimizing Intent Classification Errors (2406.17163v1)

Published 24 Jun 2024 in cs.CL, cs.AI, and cs.LG

Abstract: LLMs (LLM) have achieved remarkable success in natural language generation but lesser focus has been given to their applicability in decision making tasks such as classification. We show that LLMs like LLaMa can achieve high performance on large multi-class classification tasks but still make classification errors and worse, generate out-of-vocabulary class labels. To address these critical issues, we introduce Paraphrase and AGgregate (PAG)-LLM approach wherein an LLM generates multiple paraphrases of the input query (parallel queries), performs multi-class classification for the original query and each paraphrase, and at the end aggregate all the classification labels based on their confidence scores. We evaluate PAG-LLM on two large multi-class classication datasets: CLINC, and Banking and show 22.7% and 15.1% error reduction. We show that PAG-LLM is especially effective for hard examples where LLM is uncertain, and reduces the critical misclassification and hallucinated label generation errors

Citations (2)

Summary

We haven't generated a summary for this paper yet.