Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 20 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints (2408.07774v1)

Published 14 Aug 2024 in quant-ph

Abstract: Quantum computation shows promise for addressing numerous classically intractable problems, such as optimization tasks. Many optimization problems are NP-hard, meaning that they scale exponentially with problem size and thus cannot be addressed at scale by traditional computing paradigms. The recently proposed quantum algorithm arXiv:2206.14999 addresses this challenge for some NP-hard problems, and is based on classical semidefinite programming (SDP). In this manuscript, we generalize the SDP-inspired quantum algorithm to sum-of-squares programming, which targets a broader problem set. Our proposed algorithm addresses degree-$k$ polynomial optimization problems with $N \leq 2n$ variables (which are representative of many NP-hard problems) using $O(nk)$ qubits, $O(k)$ quantum measurements, and $O(\textrm{poly}(n))$ classical calculations. We apply the proposed algorithm to the prototypical Max-$k$SAT problem and compare its performance against classical sum-of-squares, state-of-the-art heuristic solvers, and random guessing. Simulations show that the performance of our algorithm surpasses that of classical sum-of-squares after rounding. Our results further demonstrate that our algorithm is suitable for large problems and approximates the best known classical heuristics, while also providing a more generalizable approach compared to problem-specific heuristics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube