Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

ProCom: A Few-shot Targeted Community Detection Algorithm (2408.07369v1)

Published 14 Aug 2024 in cs.SI

Abstract: Targeted community detection aims to distinguish a particular type of community in the network. This is an important task with a lot of real-world applications, e.g., identifying fraud groups in transaction networks. Traditional community detection methods fail to capture the specific features of the targeted community and detect all types of communities indiscriminately. Semi-supervised community detection algorithms, emerged as a feasible alternative, are inherently constrained by their limited adaptability and substantial reliance on a large amount of labeled data, which demands extensive domain knowledge and manual effort. In this paper, we address the aforementioned weaknesses in targeted community detection by focusing on few-shot scenarios. We propose ProCom, a novel framework that extends the ``pre-train, prompt'' paradigm, offering a low-resource, high-efficiency, and transferable solution. Within the framework, we devise a dual-level context-aware pre-training method that fosters a deep understanding of latent communities in the network, establishing a rich knowledge foundation for downstream task. In the prompt learning stage, we reformulate the targeted community detection task into pre-training objectives, allowing the extraction of specific knowledge relevant to the targeted community to facilitate effective and efficient inference. By leveraging both the general community knowledge acquired during pre-training and the specific insights gained from the prompt communities, ProCom exhibits remarkable adaptability across different datasets. We conduct extensive experiments on five benchmarks to evaluate the ProCom framework, demonstrating its SOTA performance under few-shot scenarios, strong efficiency, and transferability across diverse datasets.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com