Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Review of Pseudo-Labeling for Computer Vision (2408.07221v3)

Published 13 Aug 2024 in cs.CV and cs.LG

Abstract: Deep neural models have achieved state of the art performance on a wide range of problems in computer science, especially in computer vision. However, deep neural networks often require large datasets of labeled samples to generalize effectively, and an important area of active research is semi-supervised learning, which attempts to instead utilize large quantities of (easily acquired) unlabeled samples. One family of methods in this space is pseudo-labeling, a class of algorithms that use model outputs to assign labels to unlabeled samples which are then used as labeled samples during training. Such assigned labels, called pseudo-labels, are most commonly associated with the field of semi-supervised learning. In this work we explore a broader interpretation of pseudo-labels within both self-supervised and unsupervised methods. By drawing the connection between these areas we identify new directions when advancements in one area would likely benefit others, such as curriculum learning and self-supervised regularization.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

HackerNews

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube