Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Dynamic Difficulty Adjustment -- Imitation Learning Meets Reinforcement Learning (2408.06818v1)

Published 13 Aug 2024 in cs.AI

Abstract: Balancing game difficulty in video games is a key task to create interesting gaming experiences for players. Mismatching the game difficulty and a player's skill or commitment results in frustration or boredom on the player's side, and hence reduces time spent playing the game. In this work, we explore balancing game difficulty using machine learning-based agents to challenge players based on their current behavior. This is achieved by a combination of two agents, in which one learns to imitate the player, while the second is trained to beat the first. In our demo, we investigate the proposed framework for personalized dynamic difficulty adjustment of AI agents in the context of the fighting game AI competition.

Summary

We haven't generated a summary for this paper yet.