Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Identifying Feedforward and Feedback Controllable Subspaces of Neural Population Dynamics (2408.05875v1)

Published 11 Aug 2024 in q-bio.NC, cs.SY, and eess.SY

Abstract: There is overwhelming evidence that cognition, perception, and action rely on feedback control. However, if and how neural population dynamics are amenable to different control strategies is poorly understood, in large part because machine learning methods to directly assess controllability in neural population dynamics are lacking. To address this gap, we developed a novel dimensionality reduction method, Feedback Controllability Components Analysis (FCCA), that identifies subspaces of linear dynamical systems that are most feedback controllable based on a new measure of feedback controllability. We further show that PCA identifies subspaces of linear dynamical systems that maximize a measure of feedforward controllability. As such, FCCA and PCA are data-driven methods to identify subspaces of neural population data (approximated as linear dynamical systems) that are most feedback and feedforward controllable respectively, and are thus natural contrasts for hypothesis testing. We developed new theory that proves that non-normality of underlying dynamics determines the divergence between FCCA and PCA solutions, and confirmed this in numerical simulations. Applying FCCA to diverse neural population recordings, we find that feedback controllable dynamics are geometrically distinct from PCA subspaces and are better predictors of animal behavior. Our methods provide a novel approach towards analyzing neural population dynamics from a control theoretic perspective, and indicate that feedback controllable subspaces are important for behavior.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 33 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube