Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Divergence Maximizing Linear Projection for Supervised Dimension Reduction (2408.05827v1)

Published 11 Aug 2024 in cs.IT and math.IT

Abstract: This paper proposes two linear projection methods for supervised dimension reduction using only the first and second-order statistics. The methods, each catering to a different parameter regime, are derived under the general Gaussian model by maximizing the Kullback-Leibler divergence between the two classes in the projected sample for a binary classification problem. They subsume existing linear projection approaches developed under simplifying assumptions of Gaussian distributions, such as these distributions might share an equal mean or covariance matrix. As a by-product, we establish that the multi-class linear discriminant analysis, a celebrated method for classification and supervised dimension reduction, is provably optimal for maximizing pairwise Kullback-Leibler divergence when the Gaussian populations share an identical covariance matrix. For the case when the Gaussian distributions share an equal mean, we establish conditions under which the optimal subspace remains invariant regardless of how the Kullback-Leibler divergence is defined, despite the asymmetry of the divergence measure itself. Such conditions encompass the classical case of signal plus noise, where both the signal and noise have zero mean and arbitrary covariance matrices. Experiments are conducted to validate the proposed solutions, demonstrate their superior performance over existing alternatives, and illustrate the procedure for selecting the appropriate linear projection solution.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube