Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Physics-Informed Weakly Supervised Learning for Interatomic Potentials (2408.05215v2)

Published 23 Jul 2024 in physics.chem-ph, cs.LG, physics.bio-ph, and physics.comp-ph

Abstract: Machine learning plays an increasingly important role in computational chemistry and materials science, complementing computationally intensive ab initio and first-principles methods. Despite their utility, machine-learning models often lack generalization capability and robustness during atomistic simulations, yielding unphysical energy and force predictions that hinder their real-world applications. We address this challenge by introducing a physics-informed, weakly supervised approach for training machine-learned interatomic potentials (MLIPs). We introduce two novel loss functions, extrapolating the potential energy via a Taylor expansion and using the concept of conservative forces. Our approach improves the accuracy of MLIPs applied to training tasks with sparse training data sets and reduces the need for pre-training computationally demanding models with large data sets. Particularly, we perform extensive experiments demonstrating reduced energy and force errors -- often lower by a factor of two -- for various baseline models and benchmark data sets. Moreover, we demonstrate improved robustness during MD simulations of the MLIP models trained with the proposed weakly supervised loss. Finally, our approach improves the fine-tuning of foundation models on sparse, highly accurate ab initio data. An implementation of our method and scripts for executing experiments are available at https://github.com/nec-research/PICPS-ML4Sci.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube