Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Successive Refinement: A Generative AI-aided Semantic Communication Framework (2408.05112v1)

Published 31 Jul 2024 in cs.LG, cs.AI, and eess.IV

Abstract: Semantic Communication (SC) is an emerging technology aiming to surpass the Shannon limit. Traditional SC strategies often minimize signal distortion between the original and reconstructed data, neglecting perceptual quality, especially in low Signal-to-Noise Ratio (SNR) environments. To address this issue, we introduce a novel Generative AI Semantic Communication (GSC) system for single-user scenarios. This system leverages deep generative models to establish a new paradigm in SC. Specifically, At the transmitter end, it employs a joint source-channel coding mechanism based on the Swin Transformer for efficient semantic feature extraction and compression. At the receiver end, an advanced Diffusion Model (DM) reconstructs high-quality images from degraded signals, enhancing perceptual details. Additionally, we present a Multi-User Generative Semantic Communication (MU-GSC) system utilizing an asynchronous processing model. This model effectively manages multiple user requests and optimally utilizes system resources for parallel processing. Simulation results on public datasets demonstrate that our generative AI semantic communication systems achieve superior transmission efficiency and enhanced communication content quality across various channel conditions. Compared to CNN-based DeepJSCC, our methods improve the Peak Signal-to-Noise Ratio (PSNR) by 17.75% in Additive White Gaussian Noise (AWGN) channels and by 20.86% in Rayleigh channels.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. G. Liu, H. Du, D. Niyato, J. Kang, Z. Xiong, D. I. Kim, and X. Shen, “Semantic communications for artificial intelligence generated content (AIGC) toward effective content creation,” IEEE Network, Early Access, Jan. 2024, DOI: 10.1109/MNET.2024.3352917.
  2. C. Chaccour, W. Saad, M. Debbah, Z. Han, and H. V. Poor, “Less Data, More Knowledge: Building Next Generation Semantic Communication Networks,” IEEE Commun. Surveys Tuts., Early Access, Jun. 2024, DOI: 10.1109/COMST.2024.3412852.
  3. W. Lin, Y. Yan, L. Li, Z. Han, and T. Matsumoto, “SemantIC: Semantic Interference Cancellation Towards 6G Wireless Communications,” IEEE Commun. Lett., Early Access, Jun. 2024, DOI: 10.1109/LCOMM.2024.3412973.
  4. W. Lin, Y. Yan, L. Li, Z. Han, and T. Matsumoto, “Semantic-Forward Relaying: A Novel Framework Towards 6G Cooperative Communications,” IEEE Commun. Lett., vol. 28, no. 3, pp. 518-522, Mar. 2024.
  5. R. Cheng, Y. Sun, D. Niyato, L. Zhang, L. Zhang, and M. A. Imran, “A Wireless AI-Generated Content (AIGC) Provisioning Framework Empowered by Semantic Communication,” arXiv preprint arXiv:2310.17705, Oct. 2023.
  6. S. Laskaridis, S. I. Venieris, A. Kouris, R. Li, and N. D. Lane, “The future of consumer edge-ai computing,” arXiv preprint arXiv:2210.10514, Oct. 2022.
  7. E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint source-channel coding for wireless image transmission,” IEEE Transactions on Cognitive Communications and Networking, vol. 5, no. 3, pp. 567-579, Sept. 2019.
  8. M. Ding, J. Li, M. Ma, and X. Fan, “SNR-adaptive deep joint source-channel coding for wireless image transmission,” in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 1555-1559, Toronto, ON, Canada, Jun. 2021.
  9. M. Yang and H. S. Kim, “Deep joint source-channel coding for wireless image transmission with adaptive rate control,” in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 5193-5197, Singapore, May 2022.
  10. J. Xu, B. Ai, W. Chen, A. Yang, P. Sun, and M. Rodrigues, “Wireless image transmission using deep source channel coding with attention modules,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 4, pp. 2315-2328, May 2021.
  11. D. B. Kurka and D. Gündüz, “DeepJSCC-f: Deep joint source-channel coding of images with feedback,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 1, pp. 178-193, May 2020.
  12. H. Zhang, S. Shao, M. Tao, X. Bi, and K. B. Letaief, “Deep learning-enabled semantic communication systems with task-unaware transmitter and dynamic data,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 170-185, Jan. 2023.
  13. K. Yang, S. Wang, J. Dai, K. Tan, K. Niu, and P. Zhang, “WITT: A wireless image transmission transformer for semantic communications,” in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process. (ICASSP), Rhodes Island, Greece, Jun. 2023.
  14. K. Yu, Q. He, and G. Wu, “Two-Way Semantic Communications without Feedback,” IEEE Trans. Veh. Technol., vol. 73, no. 6, pp. 9077-9082, Jun. 2024.
  15. L. X. Nguyen, Y. L. Tun, Y. K. Tun, M. N. H. Nguyen, C. Zhang, Z. Han, and C. S. Hong, “Swin transformer-based dynamic semantic communication for multi-user with different computing capacity,” IEEE Trans. Veh. Technol., vol. 73, no. 6, pp. 8957-8972, Jun. 2024.
  16. S. Kadam and D. I. Kim, “Knowledge-aware semantic communication system design and data allocation,” IEEE Trans. Veh. Technol., vol. 73, no. 4, pp. 5755-5769, Apr. 2024.
  17. H. Xie, Z. Qin, X. Tao, and K. B. Letaief, “Task-oriented multi-user semantic communications,” IEEE J. Sel. Areas Commun., vol. 40, no. 9, pp. 2584-2597, Sept. 2022.
  18. J. Kang, H. Du, Z. Li, Z. Xiong, S. Ma, D. Niyato, and Y. Li, “Personalized saliency in task-oriented semantic communications: Image transmission and performance analysis,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 186-201, Jan. 2023.
  19. M. K. Farshbafan, W. Saad, and M. Debbah, “Common language for goal-oriented semantic communications: A curriculum learning framework,” in Proc. IEEE Int. Conf. Commun. (ICC), pp. 1710-1715, Seoul, South Korea, May 2022.
  20. Y. Wang, M. Chen, T. Luo, W. Saad, D. Niyato, H. V. Poor, and S. Cui, “Performance optimization for semantic communications: An attention-based reinforcement learning approach,” IEEE J. Sel. Areas Commun., vol. 40, no. 9, pp. 2598-2613, Sept. 2022.
  21. C. K. Thomas and W. Saad, “Neuro-symbolic causal reasoning meets signaling game for emergent semantic communications,” IEEE Trans. Wireless Commun., vol. 23, no. 5, pp. 4546-4563, May 2024.
  22. H. Yoo, T. Jung, L. Dai, S. Kim, and C.-B. Chae, “Demo: Real-Time Semantic Communications with a Vision Transformer,” in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), Seoul, South Korea, May 2022.
  23. K. Choi, K. Tatwawadi, A. Grover, T. Weissman, and S. Ermon, “Neural joint source-channel coding,” in Proc. Int. Conf. Mach. Learn. (ICML), vol. 97, pp. 1182-1192, Long Beach, California, USA, Jun. 2019.
  24. Q. Hu, G. Zhang, Z. Qin, Y. Cai, G. Yu, and G. Y. Li, “Robust semantic communications with masked VQ-VAE enabled codebook,” IEEE Trans. Wireless Commun., vol. 22, no. 12, pp. 8707-8722, Dec. 2023.
  25. T. Marchioro, N. Laurenti, and D. Gündüz, “Adversarial networks for secure wireless communications,” in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 8748-8752, Barcelona, Spain, May 2020.
  26. M. Yang, C. Bian, and H. S. Kim, “OFDM-guided deep joint source channel coding for wireless multipath fading channels,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 2, pp. 584-599, Jun. 2022.
  27. M. U. Lokumarambage, V. S. S. Gowrisetty, H. Rezaei, T. Sivalingam, and N. Rajatheva, “Wireless end-to-end image transmission system using semantic communications,” IEEE Access, vol. 11, pp. 37149-37163, Apr. 2023.
  28. E. Erdemir, T. Y. Tung, P. L. Dragotti, and D. Gündüz, “Generative joint source-channel coding for semantic image transmission,” IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2645-2657, Aug. 2023.
  29. B. Xia, Y. Zhang, S. Wang, Y. Wang, X. Wu, Y. Tian, W. Yang, and L. V. Gool, “Diffir: Efficient diffusion model for image restoration,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), pp. 13095-13105, Paris, France, Oct. 2023.
  30. X. Niu, X. Wang, D. Gündüz, B. Bai, W. Chen, and G. Zhou, “A hybrid wireless image transmission scheme with diffusion,” in Proc. IEEE 24th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), pp. 86-90, Shanghai, China, Sept. 2023.
  31. T. Wu, Z. Chen, D. He, L. Qian, Y. Xu, M. Tao, and W. Zhang, “CDDM: Channel denoising diffusion models for wireless communications,” in Proc. IEEE Global Commun. Conf., pp. 7429-7434, Kuala Lumpur, Malaysia, Dec. 2023.
  32. B. Xu, R. Meng, Y. Chen, X. Xu, C. Dong, and H. Sun, “Latent semantic diffusion-based channel adaptive de-noising semcom for future 6G systems,” in Proc. IEEE Global Commun. Conf., pp. 1229-1234, Kuala Lumpur, Malaysia, Dec. 2023.
  33. E. Grassucci, C. Marinoni, A. Rodriguez, and D. Comminiello, “Diffusion models for audio semantic communication,” in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 13136-13140, Seoul, South Korea, Apr. 2024.
  34. J. Chen, D. You, D. Gündüz, and P. L. Dragotti, “Commin: Semantic image communications as an inverse problem with INN-guided diffusion models,” in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process. (ICASSP), pp. 6675-6679, Seoul, South Korea, Apr. 2024.
  35. E. Grassucci, S. Barbarossa, and D. Comminiello, “Generative semantic communication: Diffusion models beyond bit recovery,” arXiv preprint arXiv:2306.04321, Jun. 2023.
  36. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, Dec. 2014.
Citations (1)

Summary

We haven't generated a summary for this paper yet.