A GAN-based Semantic Communication for Text without CSI (2312.16909v1)
Abstract: Recently, semantic communication (SC) has been regarded as one of the potential paradigms of 6G. Current SC frameworks require channel state information (CSI) to handle severe signal distortion induced by channel fading. Since the channel estimation overhead for obtaining CSI cannot be neglected, we therefore propose a generative adversarial network (GAN) based SC framework (Ti-GSC) that doesn't require CSI. In Ti-GSC, two main modules, i.e., an autoencoder-based encoder-decoder module (AEDM) and a GAN-based signal distortion suppression module (GSDSM) are included where AEDM first encodes the data at the source before transmission, and then GSDSM suppresses the distortion of the received signals in both syntactic and semantic dimensions at the destination. At last, AEDM decodes the distortion-suppressed signal at the destination. To measure signal distortion, syntactic distortion and semantic distortion terms are newly added to the total loss function. To achieve better training results, joint optimization-based training (JOT) and alternating optimization-based training (AOT) are designed for the proposed Ti-GSC. Experimental results show that JOT is more efficient for Ti-GSC. Moreover, without CSI, bilingual evaluation understudy (BLEU) score achieved by Ti-GSC is about 40% and 62% higher than that achieved by existing SC frameworks in Rician and Rayleigh fading, respectively. (*Due to the notification of arXiv "The Abstract field cannot be longer than 1,920 characters", the appeared Abstract is shortened. For the full Abstract, please download the Article.)
- N. Luan, K. Xiong, Y. Zhang, R. He, G. Qu, and B. Ai, “6g: Typical applications, key technologies and challenges,” Chin. J. Internet Things, vol. 6, no. 1, pp. 29–43, 2022.
- K. Xiong et al., “Optimal cooperative beamforming design for mimo decode-and-forward relay channels,” IEEE Trans. Signal Process., vol. 62, no. 6, pp. 1476–1489, 2014.
- J. Liu et al., “Max-min energy balance in wireless-powered hierarchical fog-cloud computing networks,” IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7064–7080, 2020.
- Y. Lu et al., “Coordinated beamforming with artificial noise for secure swipt under non-linear eh model: Centralized and distributed designs,” IEEE J. Select. Areas Commun., vol. 36, no. 7, pp. 1544–1563, 2018.
- R. Zhang, K. Xiong et al., “Energy efficiency maximization in ris-assisted swipt networks with rsma: A ppo-based approach,” IEEE J. Sel. Areas Commun., vol. 41, no. 5, pp. 1413–1430, 2023.
- C. Meng et al., “Sum-rate maximization in star-ris assisted rsma networks: A ppo-based algorithm,” IEEE Internet Things J., pp. 1–1, 2023.
- H. Zheng, K. Xiong et al., “Maximizing age-energy efficiency in wireless powered industrial ioe networks: A dual-layer dqn-based approach,” IEEE Trans. Wireless Commun., pp. 1–1, 2023.
- S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G be?” Nat Electron, vol. 3, no. 1, pp. 20–29, Jan. 2020.
- Y. Wang, Z. Su, S. Guo, M. Dai, T. H. Luan, and Y. Liu, “A Survey on Digital Twins: Architecture, Enabling Technologies, Security and Privacy, and Future Prospects,” Jan. 2023, arXiv:2301.13350. [Online]. Available: http://arxiv.org/abs/2301.13350
- S. Zhang, W. Y. B. Lim, W. C. Ng, Z. Xiong, D. Niyato, X. S. Shen, and C. Miao, “Towards Green Metaverse Networking Technologies, Advancements and Future Directions,” Nov. 2022, arXiv:2211.03057. [Online]. Available: http://arxiv.org/abs/2211.03057
- W. Weaver, “Recent contributions to the mathematical theory of communication,” p. 12.
- G. Xin and P. Fan, “Exk-sc: A semantic communication model based on information framework expansion and knowledge collision,” Entropy, vol. 24, no. 12, 2022.
- Q. Zhou et al., “Adaptive Bit Rate Control in Semantic Communication With Incremental Knowledge-Based HARQ,” IEEE Open J. Commun. Soc., vol. 3, pp. 1076–1089, 2022.
- K. Lu et al., “Rethinking Modern Communication from Semantic Coding to Semantic Communication,” IEEE Wireless Commun., vol. 30, no. 1, pp. 158–164, Feb. 2023.
- B. Wang et al., “Knowledge Enhanced Semantic Communication Receiver,” IEEE Commun. Lett., pp. 1–1, 2023.
- N. Farsad, M. Rao, and A. Goldsmith, “Deep learning for joint source-channel coding of text,” in Proc. IEEE ICASSP, Calgary, AB, Canada, 2018, pp. 2326–2330.
- P. Zhang, W. Xu, H. Gao, K. Niu, X. Xu, X. Qin, C. Yuan, Z. Qin, H. Zhao, J. Wei, and F. Zhang, “Toward Wisdom-Evolutionary and Primitive-Concise 6G: A New Paradigm of Semantic Communication Networks,” Engineering, vol. 8, pp. 60–73, Jan. 2022.
- W. Yang, H. Du, Z. Liew, W. Y. B. Lim, Z. Xiong, D. Niyato, X. Chi, X. S. Shen, and C. Miao, “Semantic Communications for 6G Future Internet: Fundamentals, Applications, and Challenges,” Jun. 2022, arXiv:2207.00427. [Online]. Available: http://arxiv.org/abs/2207.00427
- D. Gündüz et al., “Beyond transmitting bits: Context, semantics, and task-oriented communications,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 5–41, 2023.
- Y. Wang et al., “Performance Optimization for Semantic Communications: An Attention-based Reinforcement Learning Approach,” IEEE J. Select. Areas Commun., pp. 1–1, 2022.
- J. Dai, S. Wang, K. Tan, Z. Si, X. Qin, K. Niu, and P. Zhang, “Nonlinear Transform Source-Channel Coding for Semantic Communications,” IEEE J. Sel. Areas Commun., vol. 40, no. 8, pp. 2300–2316, 2022.
- J. Shao, Y. Mao, and J. Zhang, “Learning Task-Oriented Communication for Edge Inference: An Information Bottleneck Approach,” IEEE J. Select. Areas Commun., vol. 40, no. 1, pp. 197–211, Jan. 2022.
- J. Shao, Y. Mao, and J. Zhang, “Task-oriented communication for multidevice cooperative edge inference,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 73–87, 2023.
- S. Xie, Y. Wu, S. Ma, M. Ding, Y. Shi, and M. Tang, “Robust Information Bottleneck for Task-Oriented Communication with Digital Modulation,” Sep. 2022, arXiv:2209.10382v1. [Online]. Available: https://arxiv.org/abs/2209.10382v1
- S. Tang et al., “Contrastive Learning based Semantic Communication for Wireless Image Transmission,” Apr. 2023, arXiv:2304.09438. [Online]. Available: http://arxiv.org/abs/2304.09438
- H. Xie and Z. Qin, “A Lite Distributed Semantic Communication System for Internet of Things,” IEEE J. Select. Areas Commun., vol. 39, no. 1, pp. 142–153, Jan. 2021.
- H. Xie et al., “Deep Learning Enabled Semantic Communication Systems,” IEEE Trans. Signal Process., vol. 69, pp. 2663–2675, 2021.
- Q. Zhou, R. Li, Z. Zhao, C. Peng, and H. Zhang, “Semantic Communication With Adaptive Universal Transformer,” IEEE Wireless Commun. Lett., vol. 11, no. 3, pp. 453–457, Mar. 2022.
- H. Xie, Z. Qin, X. Tao, and K. B. Letaief, “Task-Oriented Multi-User Semantic Communications,” IEEE J. Select. Areas Commun., vol. 40, no. 9, pp. 2584–2597, Sep. 2022.
- M. Yang, C. Bian, and H.-S. Kim, “OFDM-Guided Deep Joint Source Channel Coding for Wireless Multipath Fading Channels,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 2, pp. 584–599, Jun. 2022.
- T. Han, Q. Yang, Z. Shi, S. He, and Z. Zhang, “Semantic-Preserved Communication System for Highly Efficient Speech Transmission,” IEEE J. Select. Areas Commun., vol. 41, no. 1, pp. 245–259, Jan. 2023.
- D. Huang, F. Gao, X. Tao, Q. Du, and J. Lu, “Toward Semantic Communications: Deep Learning-Based Image Semantic Coding,” IEEE J. Select. Areas Commun., vol. 41, no. 1, pp. 55–71, Jan. 2023.
- P. Jiang, C.-K. Wen, S. Jin, and G. Y. Li, “Wireless Semantic Communications for Video Conferencing,” IEEE J. Select. Areas Commun., vol. 41, no. 1, pp. 230–244, Jan. 2023.
- W. Yue et al., “Learned Source and Channel Coding for Talking-Head Semantic Transmission,” in Proc. IEEE WCNC, Mar. 2023, pp. 1–6.
- B. Zhang, Z. Qin, and G. Y. Li, “Semantic Communications with Variable-Length Coding for Extended Reality,” Mar. 2023, arXiv:2302.08645. [Online]. Available: http://arxiv.org/abs/2302.08645
- J. Chen et al., “Trust-Worthy Semantic Communications for the Metaverse Relying on Federated Learning,” May 2023, arXiv:2305.09255. [Online]. Available: http://arxiv.org/abs/2305.09255
- H. Zhang et al., “Deep Learning-Enabled Semantic Communication Systems with Task-Unaware Transmitter and Dynamic Data,” Aug. 2022, arXiv:2205.00271. [Online]. Available: http://arxiv.org/abs/2205.00271
- J. Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” May 2019, arXiv:1810.04805. [Online]. Available: http://arxiv.org/abs/1810.04805
- K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” Apr. 2015. [Online]. Available: http://arxiv.org/abs/1409.1556
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc., 2017, p. 6000–6010.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,” in Proc. NeurIPS, 2014.
- C. Shannon and W. Weaver, “The Mathematical Theory of Communication,” The University of Illinois Press, p. 131, 1949.
- A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical Text-Conditional Image Generation with CLIP Latents,” Apr. 2022. [Online]. Available: https://arxiv.org/abs/2204.06125v1
- J. Liu et al., “A Rate-Distortion Framework for Characterizing Semantic Information,” in Proc. IEEE ISIT, Jul. 2021, pp. 2894–2899.
- Y. E. Sagduyu, T. Erpek, S. Ulukus, and A. Yener, “Is Semantic Communications Secure? A Tale of Multi-Domain Adversarial Attacks,” Dec. 2022. [Online]. Available: https://arxiv.org/abs/2212.10438v1
- D. Huang, X. Tao, F. Gao, and J. Lu, “Deep Learning-Based Image Semantic Coding for Semantic Communications,” in Proc. IEEE GLOBECOM. Madrid, Spain: IEEE, Dec. 2021, pp. 1–6.
- K. Lu, R. Li, X. Chen, Z. Zhao, and H. Zhang, “Reinforcement Learning-powered Semantic Communication via Semantic Similarity,” Apr. 2022, arXiv:2108.12121. [Online]. Available: http://arxiv.org/abs/2108.12121
- P. Koehn, “Europarl: A parallel corpus for statistical machine translation,” MT summit, vol. 5, pp. 79–86, Sep. 2005.
- O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” May 2015, arXiv:1505.04597. [Online]. Available: http://arxiv.org/abs/1505.04597
- A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities Improve Neural Network Acoustic Models.”
- D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Jan. 2017, arXiv:1412.6980. [Online]. Available: http://arxiv.org/abs/1412.6980
- P. Elias, “Coding for noisy channels,” in RE Conv. Rec., 1955, pp. 37–46.
- K. Papineni et al., “Bleu: a Method for Automatic Evaluation of Machine Translation,” in Proc. ACL’02, Jul. 2002, pp. 311–318.
- V. D. M. Laurens et al., “Visualizing Data using t-SNE,” Journal of Machine Learning Research, vol. 9, no. 2605, pp. 2579–2605, 2008.
- Jin Mao (3 papers)
- Ke Xiong (32 papers)
- Ming Liu (421 papers)
- Zhijin Qin (81 papers)
- Wei Chen (1290 papers)
- Pingyi Fan (137 papers)
- Khaled Ben Letaief (27 papers)