Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New variable weighted conditions for fractional maximal operators over spaces of homogeneous type (2408.04544v2)

Published 8 Aug 2024 in math.CA and math.FA

Abstract: Based on the rapid development of dyadic analysis and the theory of variable weighted function spaces over the spaces of homogeneous type $(X,d,\mu)$ in recent years, we systematically consider the quantitative variable weighted characterizations for fractional maximal operators. On the one hand, a new class of variable multiple weight $A_{\vec{p}(\cdot),q(\cdot)}(X)$ is established, which enables us to prove the strong and weak type variable multiple weighted estimates for multilinear fractional maximal operators ${{{\mathscr M}{\eta }}}$. More precisely, [ {\left[ {\vec \omega } \right]{{A_{\vec p( \cdot ),q( \cdot )}}(X)}} \lesssim {\left| \mathscr{M}\eta \right|{\prod\limits_{i = 1}m {{L{p_i( \cdot )}}({X,\omega i})} \to {L{q( \cdot )}}(X,\omega )({WL{q( \cdot )}}(X,\omega ))}} \le {C{\vec \omega ,\eta ,m,\mu ,X,\vec p( \cdot )}}. ] On the other hand, on account of the classical Sawyer's condition $S_{p,q}(\mathbb{R}n)$, a new variable testing condition $C_{{p}(\cdot),q(\cdot)}(X)$ also appears in here, which allows us to obtain quantitative two-weighted estimates for fractional maximal operators ${{{M}{\eta }}}$. To be exact, \begin{align*} |M{\eta}|{L{p(\cdot)}(X,\omega)\rightarrow L{q(\cdot)}(X,v)} \lesssim \sum\limits{\theta = \frac{1}{{{p_{\rm{ - }}}}},\frac{1}{{{p_{\rm{ + }}}}}} {{{\left( {{{[\omega ,v]}{C{p( \cdot ),q( \cdot )}2(X)}} + {{[\omega ]}{C{p( \cdot ),q( \cdot )}1(X)}}{{[\omega ,v]}{C{p( \cdot ),q( \cdot )}2(X)}}} \right)}\theta }}. \end{align*} The implicit constants mentioned above are independent on the weights.

Summary

We haven't generated a summary for this paper yet.