Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Calibration-Disentangled Learning and Relevance-Prioritized Reranking for Calibrated Sequential Recommendation (2408.02156v1)

Published 4 Aug 2024 in cs.IR and cs.AI

Abstract: Calibrated recommendation, which aims to maintain personalized proportions of categories within recommendations, is crucial in practical scenarios since it enhances user satisfaction by reflecting diverse interests. However, achieving calibration in a sequential setting (i.e., calibrated sequential recommendation) is challenging due to the need to adapt to users' evolving preferences. Previous methods typically leverage reranking algorithms to calibrate recommendations after training a model without considering the effect of calibration and do not effectively tackle the conflict between relevance and calibration during the reranking process. In this work, we propose LeapRec (Calibration-Disentangled Learning and Relevance-Prioritized Reranking), a novel approach for the calibrated sequential recommendation that addresses these challenges. LeapRec consists of two phases, model training phase and reranking phase. In the training phase, a backbone model is trained using our proposed calibration-disentangled learning-to-rank loss, which optimizes personalized rankings while integrating calibration considerations. In the reranking phase, relevant items are prioritized at the top of the list, with items needed for calibration following later to address potential conflicts between relevance and calibration. Through extensive experiments on four real-world datasets, we show that LeapRec consistently outperforms previous methods in the calibrated sequential recommendation. Our code is available at https://github.com/jeon185/LeapRec.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com