Freiman's $3k-4$ Theorem for Function Fields (2408.00183v2)
Abstract: Freiman's $3k-4$ Theorem states that if a subset $A$ of $k$ integers has a Minkowski sum $A+A$ of size at most $3k-4$, then it must be contained in a short arithmetic progression. We prove a function field analogue that is also a generalisation: it states that if $K$ is a perfect field and if $S\supset K$ is a vector space of dimension $k$ inside an extension $F/K$ in which~$K$ is algebraically closed, and if the $K$-vector space generated by all products of pairs of elements of $S$ has dimension at most $3k-4$, then $K(S)$ is a function field of small genus, and $S$ is of small codimension inside a Riemann-Roch space of $K(S)$.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.