Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Static and Dynamic Approximation Algorithms for Geometric Optimization Problems: Piercing, Independent Set, Vertex Cover, and Matching (2407.20659v1)

Published 30 Jul 2024 in cs.CG and cs.DS

Abstract: We develop simple and general techniques to obtain faster (near-linear time) static approximation algorithms, as well as efficient dynamic data structures, for four fundamental geometric optimization problems: minimum piercing set (MPS), maximum independent set (MIS), minimum vertex cover (MVC), and maximum-cardinality matching (MCM). Highlights of our results include the following: * For $n$ axis-aligned boxes in any constant dimension $d$, we give an $O(\log \log n)$-approximation algorithm for MPS that runs in $O(n{1+\delta})$ time for an arbitrarily small constant $\delta>0$. This significantly improves the previous $O(\log\log n)$-approximation algorithm by Agarwal, Har-Peled, Raychaudhury, and Sintos (SODA~2024), which ran in $O(n{d/2}\mathop{\rm polylog} n)$ time. * Furthermore, we show that our algorithm can be made fully dynamic with $O(n{\delta})$ amortized update time. Previously, Agarwal et al.~(SODA~2024) obtained dynamic results only in $\mathbb{R}2$ and achieved only $O(\sqrt{n}\mathop{\rm polylog} n)$ amortized expected update time. * For $n$ axis-aligned rectangles in $\mathbb{R}2$, we give an $O(1)$-approximation algorithm for MIS that runs in $O(n{1+\delta})$ time. Our result significantly improves the running time of the celebrated algorithm by Mitchell (FOCS~2021) (which was about $O(n{21})$), and answers one of his open questions. Our algorithm can also be made fully dynamic with $O(n{\delta})$ amortized update time. * For $n$ (unweighted or weighted) fat objects in any constant dimension, we give a dynamic $O(1)$-approximation algorithm for MIS with $O(n{\delta})$ amortized update time. * For disks in $\mathbb{R}2$ or hypercubes in any constant dimension, we give the first fully dynamic $(1+\varepsilon)$-approximation algorithms for MVC and MCM with $O(\mathop{\rm polylog}n)$ amortized update time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (91)
  1. Fully dynamic matching: (2−2)22(2-\sqrt{2})( 2 - square-root start_ARG 2 end_ARG )-approximation in polylog update time. In Proceedings of the 35th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3040–3061, 2024. doi:10.1137/1.9781611977912.109.
  2. Dynamic geometric set cover and hitting set. ACM Trans. Algorithms, 18(4):40:1–40:37, 2022. doi:10.1145/3551639.
  3. Geometric range searching and its relatives. In Advances in Discrete and Computational Geometry, pages 1–56. AMS Press, 1999.
  4. Small-size ε𝜀\varepsilonitalic_ε-nets for axis-parallel rectangles and boxes. SIAM J. Comput., 39(7):3248–3282, 2010. doi:10.1137/090762968.
  5. On a coloring problem. Mathematica Scandinavica, 8(1):181–188, 1960. doi:10.7146/math.scand.a-10607.
  6. Fast approximation algorithms for piercing boxes by points. In Proceedings of the 35th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 4892–4908, 2024. doi:10.1137/1.9781611977912.174.
  7. Geometric approximation via coresets. In Combinatorial and Computational Geometry, pages 1–30. Cambridge University Press, 2005.
  8. Approximation schemes for independent set and sparse subsets of polygons. J. ACM, 66(4):29:1–29:40, 2019. doi:10.1145/3326122.
  9. An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM, 45(6):891–923, 1998. doi:10.1145/293347.293348.
  10. Near-linear algorithms for geometric hitting sets and set covers. Discret. Comput. Geom., 63(2):460–482, 2020. doi:10.1007/S00454-019-00099-6.
  11. Arrangements and their applications. In Handbook of Computational Geometry, pages 49–119. North Holland / Elsevier, 2000. doi:10.1016/B978-044482537-7/50003-6.
  12. Label placement by maximum independent set in rectangles. Comput. Geom., 11(3-4):209–218, 1998. doi:10.1016/S0925-7721(98)00028-5.
  13. Color-coding. J. ACM, 42(4):844–856, 1995. doi:10.1145/210332.210337.
  14. Dynamic geometric independent set. In Abstracts of 23rd Thailand-Japan Conference on Discrete and Computational Geometry, Graphs, and Games (TJDCG), 2021. arXiv:2007.08643.
  15. Maximum matchings in geometric intersection graphs. Discrete & Computational Geometry, pages 1–30, 2023. doi:10.1007/S00454-023-00564-3.
  16. Improved approximation algorithms for rectangle tiling and packing. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 427–436, 2001. URL: http://dl.acm.org/citation.cfm?id=365411.365496.
  17. Soheil Behnezhad. Dynamic algorithms for maximum matching size. In Proceedings of the 34th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 129–162, 2023. doi:10.1137/1.9781611977554.CH6.
  18. Almost optimal set covers in finite VC-dimension. Discret. Comput. Geom., 14(4):463–479, 1995. doi:10.1007/BF02570718.
  19. Deterministic fully dynamic data structures for vertex cover and matching. SIAM J. Comput., 47(3):859–887, 2018. doi:10.1137/140998925.
  20. Minimum vertex cover in rectangle graphs. Computational Geometry, 44(6-7):356–364, 2011. doi:10.1016/J.COMGEO.2011.03.002.
  21. Deterministically maintaining a (2+ε)2𝜀(2+\varepsilon)( 2 + italic_ε )-approximate minimum vertex cover in O⁢(1/ε2)𝑂1superscript𝜀2O(1/{\varepsilon}^{2})italic_O ( 1 / italic_ε start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) amortized update time. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1872–1885, 2019. doi:10.1137/1.9781611975482.113.
  22. Obnoxious facility location: Complete service with minimal harm. International Journal of Computational Geometry & Applications, 10(06):581–592, 2000. doi:10.1142/S0218195900000322.
  23. Dynamic matching with better-than-2 approximation in polylogarithmic update time. In Proceedings of the 34th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 100–128, 2023. doi:10.1137/1.9781611977554.CH5.
  24. Fully dynamic maximum independent sets of disks in polylogarithmic update time. In 40th International Symposium on Computational Geometry, SoCG, volume 293 of LIPIcs, pages 19:1–19:16, 2024. doi:10.4230/LIPICS.SOCG.2024.19.
  25. Fully dynamic matching in bipartite graphs. In Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming (ICALP), Part I, volume 9134 of Lecture Notes in Computer Science, pages 167–179. Springer, 2015. doi:10.1007/978-3-662-47672-7\_14.
  26. Faster fully dynamic matchings with small approximation ratios. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 692–711, 2016. doi:10.1137/1.9781611974331.CH50.
  27. Maximum independent set of rectangles. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 892–901. SIAM, 2009. doi:10.1137/1.9781611973068.97.
  28. Geometric matching and bottleneck problems. In Proceedings of the 40th International Symposium on Computational Geometry (SoCG), volume 293 of LIPIcs, pages 31:1–31:15, 2024. doi:10.4230/LIPICS.SOCG.2024.31.
  29. On approximating maximum independent set of rectangles. In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 820–829, 2016. doi:10.1109/FOCS.2016.92.
  30. Approximation algorithms for maximum independent set of pseudo-disks. Discret. Comput. Geom., 48(2):373–392, 2012. doi:10.1007/S00454-012-9417-5.
  31. Faster approximation algorithms for geometric set cover. In Proceedings of the 36th International Symposium on Computational Geometry (SoCG), volume 164 of LIPIcs, pages 27:1–27:14, 2020. doi:10.4230/LIPICS.SOCG.2020.27.
  32. More dynamic data structures for geometric set cover with sublinear update time. In Proceedings of the 37th International Symposium on Computational Geometry (SoCG), volume 189 of LIPIcs, pages 25:1–25:14, 2021. doi:10.4230/LIPICS.SOCG.2021.25.
  33. Dynamic geometric connectivity in the plane with constant query time. In Proceedings of the 40th International Symposium on Computational Geometry (SoCG), volume 293 of LIPIcs, pages 36:1–36:13, 2024. doi:10.4230/LIPICS.SOCG.2024.36.
  34. Timothy M. Chan. Approximate nearest neighbor queries revisited. Discret. Comput. Geom., 20(3):359–373, 1998. doi:10.1007/PL00009390.
  35. Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat objects. J. Algorithms, 46(2):178–189, 2003. doi:10.1016/S0196-6774(02)00294-8.
  36. Timothy M. Chan. A note on maximum independent sets in rectangle intersection graphs. Inf. Process. Lett., 89(1):19–23, 2004. doi:10.1016/J.IPL.2003.09.019.
  37. Timothy M. Chan. Dynamic subgraph connectivity with geometric applications. SIAM J. Comput., 36(3):681–694, 2006. doi:10.1137/S009753970343912X.
  38. Timothy M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor queries. J. ACM, 57(3):16:1–16:15, 2010. doi:10.1145/1706591.1706596.
  39. Timothy M. Chan. Dynamic generalized closest pair: Revisiting Eppstein’s technique. In Proceedings of the 3rd SIAM Symposium on Simplicity in Algorithms (SOSA), pages 33–37, 2020. doi:10.1137/1.9781611976014.6.
  40. Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. Discret. Comput. Geom., 64(4):1235–1252, 2020. doi:10.1007/S00454-020-00229-5.
  41. Fast LP-based approximations for geometric packing and covering problems. In Proceedings of the 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1019–1038, 2020. doi:10.1137/1.9781611975994.62.
  42. Dynamic geometric set cover, revisited. In Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3496–3528, 2022. doi:10.1137/1.9781611977073.139.
  43. Worst-case efficient dynamic geometric independent set. In Proceedings of the 29th Annual European Symposium on Algorithms (ESA), volume 204 of LIPIcs, pages 25:1–25:15, 2021. doi:10.4230/LIPICS.ESA.2021.25.
  44. Maximum flow and minimum-cost flow in almost-linear time. In Proceedings of the 63rd IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 612–623, 2022. doi:10.1109/FOCS54457.2022.00064.
  45. Orthogonal range searching on the RAM, revisited. In Proceedings of the 27th ACM Symposium on Computational Geometry (SoCG), pages 1–10, 2011. doi:10.1145/1998196.1998198.
  46. Approximating the piercing number for unit-height rectangles. In Proceedings of the 17th Annual Canadian Conference on Computational Geometry (CCCG), pages 15–18, 2005.
  47. New partitioning techniques and faster algorithms for approximate interval scheduling. In Proceedings of the 50th International Colloquium on Automata, Languages, and Programming (ICALP), volume 261 of LIPIcs, pages 45:1–45:16, 2023. doi:https://doi.org/10.4230/LIPIcs.ICALP.2023.45.
  48. A polynomial-time OPTεsuperscriptOPT𝜀\textrm{OPT}^{\varepsilon}OPT start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT-approximation algorithm for maximum independent set of connected subgraphs in a planar graph. In Proceedings of the 35th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 625–638, 2024. doi:10.1137/1.9781611977912.23.
  49. Coloring and maximum weight independent set of rectangles. In Proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 860–868, 2021. doi:10.1137/1.9781611976465.54.
  50. Computational Geometry: Algorithms and Applications. Springer, 3rd edition, 2008. URL: https://www.worldcat.org/oclc/227584184.
  51. Linear-time approximation for maximum weight matching. J. ACM, 61(1):1:1–1:23, 2014. doi:10.1145/2529989.
  52. Geometry helps in bottleneck matching and related problems. Algorithmica, 31:1–28, 2001. doi:10.1007/S00453-001-0016-8.
  53. Polynomial-time approximation schemes for geometric intersection graphs. SIAM Journal on Computing, 34(6):1302–1323, 2005. doi:10.1137/S0097539702402676.
  54. Dynamic data structures for fat objects and their applications. Computational Geometry, 15(4):215–227, 2000. doi:10.1016/S0925-7721(99)00059-0.
  55. David Eppstein. Dynamic Euclidean minimum spanning trees and extrema of binary functions. Discret. Comput. Geom., 13:111–122, 1995. doi:10.1007/BF02574030.
  56. Esther Ezra. A note about weak ε𝜀\varepsilonitalic_ε-nets for axis-parallel boxes in d𝑑ditalic_d-space. Information Processing Letters, 110(18-19):835–840, 2010. doi:10.1016/J.IPL.2010.06.005.
  57. Clique partitions, graph compression and speeding-up algorithms. J. Comput. Syst. Sci., 51(2):261–272, 1995. doi:10.1006/JCSS.1995.1065.
  58. Computing the independence number of intersection graphs. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1161–1165, 2011. doi:10.1137/1.9781611973082.87.
  59. Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees, with applications. SIAM J. Comput., 14(4):781–798, 1985. doi:10.1137/0214055.
  60. A (2+ε)2𝜀(2+\varepsilon)( 2 + italic_ε )-approximation algorithm for maximum independent set of rectangles. CoRR, abs/2106.00623, 2021. arXiv:2106.00623.
  61. A 3-approximation algorithm for maximum independent set of rectangles. In Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 894–905, 2022. doi:10.1137/1.9781611977073.38.
  62. Fully dynamic (1+ε)1𝜀(1+\varepsilon)( 1 + italic_ε )-approximate matchings. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 548–557, 2013. doi:10.1109/FOCS.2013.65.
  63. Sariel Har-Peled. Approximately: Independence implies vertex cover. CoRR, abs/2308.00840, 2023. arXiv:2308.00840.
  64. An n5/2superscript𝑛52n^{5/2}italic_n start_POSTSUPERSCRIPT 5 / 2 end_POSTSUPERSCRIPT algorithm for maximum matchings in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973. doi:10.1137/0202019.
  65. Approximation schemes for covering and packing problems in image processing and VLSI. Journal of the ACM, 32(1):130–136, 1985. doi:10.1145/2455.214106.
  66. Dynamic approximate maximum independent set of intervals, hypercubes and hyperrectangles. In Proceedings of the 36th International Symposium on Computational Geometry (SoCG), volume 164 of LIPIcs, pages 51:1–51:14, 2020. doi:10.4230/LIPICS.SOCG.2020.51.
  67. Approximation algorithms for the mobile piercing set problem with applications to clustering in ad-hoc networks. In Proceedings of the 6th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, pages 52–61, 2002. doi:10.1023/B:MONE.0000013626.53247.1C.
  68. Approximation algorithms for maximum matchings in geometric intersection graphs. In Proceedings of the 38th International Symposium on Computational Geometry (SoCG), volume 224 of LIPIcs, pages 47:1–47:13, 2022. doi:10.4230/LIPICS.SOCG.2022.47.
  69. Piotr Indyk. A near linear time constant factor approximation for Euclidean bichromatic matching (cost). In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 39–42. SIAM, 2007.
  70. Dynamic connectivity in disk graphs. In Proceedings of the 38th International Symposium on Computational Geometry (SoCG), volume 224 of LIPIcs, pages 49:1–49:17, 2022. doi:10.4230/LIPICS.SOCG.2022.49.
  71. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discret. Comput. Geom., 1:59–70, 1986. doi:10.1007/BF02187683.
  72. On approximating rectangle tiling and packing. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 384–393, 1998. URL: http://dl.acm.org/citation.cfm?id=314613.314768.
  73. Dynamic planar Voronoi diagrams for general distance functions and their algorithmic applications. Discret. Comput. Geom., 64(3):838–904, 2020. doi:10.1007/S00454-020-00243-7.
  74. Maintenance of a piercing set for intervals with applications. Algorithmica, 36(1):59–73, 2003. doi:10.1007/S00453-002-1006-1.
  75. Improved distributed approximate matching. J. ACM, 62(5):38:1–38:17, 2015. doi:10.1145/2786753.
  76. A 1.9999-approximation algorithm for vertex cover on string graphs. In Proceedings of the 40th International Symposium on Computational Geometry (SoCG), volume 293 of LIPIcs, pages 72:1–72:11, 2024. doi:10.4230/LIPICS.SOCG.2024.72.
  77. Applications of a planar separator theorem. SIAM J. Comput., 9(3):615–627, 1980. doi:10.1137/0209046.
  78. Dániel Marx. On the optimality of planar and geometric approximation schemes. In Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 338–348, 2007. doi:10.1109/FOCS.2007.26.
  79. Joseph S. B. Mitchell. Approximating maximum independent set for rectangles in the plane. In Proceedings of the 62nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 339–350, 2022. doi:10.1109/FOCS52979.2021.00042.
  80. Frank Nielsen. Fast stabbing of boxes in high dimensions. Theor. Comput. Sci., 246(1-2):53–72, 2000. doi:10.1016/S0304-3975(98)00336-3.
  81. Vertex packings: Structural properties and algorithms. Mathematical Programming, 8(1):232–248, 1975. doi:10.1007/BF01580444.
  82. Maintaining a large matching and a small vertex cover. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), pages 457–464, 2010. doi:10.1145/1806689.1806753.
  83. Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes in Computer Science. Springer, 1983. doi:10.1007/BFB0014927.
  84. Computational Geometry: An Introduction. Springer, 1985.
  85. Dynamic (1+ε)1𝜀(1+\varepsilon)( 1 + italic_ε )-approximate matchings: A density-sensitive approach. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 712–729, 2016. doi:10.1137/1.9781611974331.CH51.
  86. Cutting glass. Discret. Comput. Geom., 24(2-3):481–496, 2000. doi:10.1007/S004540010050.
  87. Shay Solomon. Fully dynamic maximal matching in constant update time. In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 325–334, 2016. doi:10.1109/FOCS.2016.43.
  88. Rectilinear and polygonal p𝑝pitalic_p-piercing and p𝑝pitalic_p-center problems. In Proceedings of the 12th Annual Symposium on Computational Geometry (SoCG), pages 122–132, 1996. doi:10.1145/237218.237255.
  89. Geometric separator theorems & applications. In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 232–243, 1998. doi:10.1109/SFCS.1998.743449.
  90. Vijay V. Vazirani. A theory of alternating paths and blossoms for proving correctness of the O⁢(V⁢E)𝑂𝑉𝐸O(\sqrt{V}E)italic_O ( square-root start_ARG italic_V end_ARG italic_E ) general graph maximum matching algorithm. Comb., 14(1):71–109, 1994. doi:10.1007/BF01305952.
  91. David Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput., 3(1):103–128, 2007. doi:10.4086/TOC.2007.V003A006.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com