Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fully Dynamic Geometric Vertex Cover and Matching (2402.07441v2)

Published 12 Feb 2024 in cs.CG

Abstract: In this work, we study two fundamental graph optimization problems, minimum vertex cover (MVC) and maximum-cardinality matching (MCM), for intersection graphs of geometric objects, e.g., disks, rectangles, hypercubes, etc., in $d$-dimensional Euclidean space. We consider the problems in fully dynamic settings, allowing insertions and deletions of objects. We develop a general framework for dynamic MVC in intersection graphs, achieving sublinear amortized update time for most natural families of geometric objects. In particular, we show that - - For a dynamic collection of disks in $\mathbb{R}2$ or hypercubes in $\mathbb{R}d$ (for constant $d$), it is possible to maintain a $(1+\varepsilon)$-approximate vertex cover in polylog amortized update time. These results also hold in the bipartite case. - For a dynamic collection of rectangles in $\mathbb{R}2$, it is possible to maintain a $(\frac{3}{2}+\varepsilon)$-approximate vertex cover in polylog amortized update time. Along the way, we obtain the first near-linear time static algorithms for MVC in the above two cases with the same approximation factors. Next, we turn our attention to the MCM problem. Although our MVC algorithms automatically allow us to approximate the size of the MCM in bipartite geometric intersection graphs, they do not produce a matching. We give another general framework to maintain an approximate maximum matching, and further extend the approach to handle non-bipartite intersection graphs. In particular, we show that - - For a dynamic collection of (bichromatic or monochromatic) disks in $\mathbb{R}2$ or hypercubes in $\mathbb{R}d$ (for constant $d$), it is possible to maintain a $(1+\varepsilon)$-approximate matching in polylog amortized update time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. Fully dynamic matching: (2−2)22(2-\sqrt{2})( 2 - square-root start_ARG 2 end_ARG )-approximation in polylog update time. In Proceedings of the 35th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3040–3061, 2024. doi:10.1137/1.9781611977912.109.
  2. Dynamic connectivity for axis-parallel rectangles. Algorithmica, 53(4):474–487, 2009. doi:10.1007/S00453-008-9234-7.
  3. Dynamic geometric set cover and hitting set. ACM Trans. Algorithms, 18(4):40:1–40:37, 2022. doi:10.1145/3551639.
  4. Geometric range searching and its relatives. In B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances in Discrete and Computational Geometry, pages 1–56. AMS Press, 1999.
  5. Fast approximation algorithms for piercing boxes by points. In Proceedings of the 35th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 4892–4908, 2024. doi:10.1137/1.9781611977912.174.
  6. Approximation schemes for independent set and sparse subsets of polygons. J. ACM, 66(4):29:1–29:40, 2019. doi:10.1145/3326122.
  7. Color-coding. J. ACM, 42(4):844–856, 1995. doi:10.1145/210332.210337.
  8. Dynamic geometric independent set. In Abstracts of 23rd Thailand-Japan Conference on Discrete and Computational Geometry, Graphs, and Games (TJDCG), 2021. arXiv:2007.08643.
  9. Maximum matchings in geometric intersection graphs. Discrete & Computational Geometry, pages 1–30, 2023. doi:10.1007/S00454-023-00564-3.
  10. Soheil Behnezhad. Dynamic algorithms for maximum matching size. In Proceedings of the 34th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 129–162, 2023. doi:10.1137/1.9781611977554.CH6.
  11. Almost optimal set covers in finite VC-dimension. Discret. Comput. Geom., 14(4):463–479, 1995. doi:10.1007/BF02570718.
  12. Deterministic fully dynamic data structures for vertex cover and matching. SIAM J. Comput., 47(3):859–887, 2018. doi:10.1137/140998925.
  13. Dynamic planar convex hull. In Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS), pages 617–626, 2002. doi:10.1109/SFCS.2002.1181985.
  14. Deterministically maintaining a (2+ε)2𝜀(2+\varepsilon)( 2 + italic_ε )-approximate minimum vertex cover in O⁢(1/ε2)𝑂1superscript𝜀2O(1/{\varepsilon}^{2})italic_O ( 1 / italic_ε start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) amortized update time. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1872–1885, 2019. doi:10.1137/1.9781611975482.113.
  15. Dynamic matching with better-than-2 approximation in polylogarithmic update time. In Proceedings of the 34th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 100–128, 2023. doi:10.1137/1.9781611977554.CH5.
  16. An algorithmic study of fully dynamic independent sets for map labeling. ACM J. Exp. Algorithmics, 27:1.8:1–1.8:36, 2022. doi:10.1145/3514240.
  17. Fully dynamic maximum independent sets of disks in polylogarithmic update time. CoRR, abs/2308.00979, 2023. To appear in SoCG 2024. arXiv:2308.00979.
  18. Fully dynamic matching in bipartite graphs. In Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming (ICALP), Part I, volume 9134 of Lecture Notes in Computer Science, pages 167–179. Springer, 2015. doi:10.1007/978-3-662-47672-7_14.
  19. Faster fully dynamic matchings with small approximation ratios. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 692–711, 2016. doi:10.1137/1.9781611974331.CH50.
  20. Minimum vertex cover in rectangle graphs. Computational Geometry, 44(6-7):356–364, 2011. doi:10.1016/J.COMGEO.2011.03.002.
  21. Unit disk graphs. Discrete mathematics, 86(1-3):165–177, 1990. doi:10.1016/0012-365X(90)90358-O.
  22. On approximating maximum independent set of rectangles. In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 820–829, 2016. doi:10.1109/FOCS.2016.92.
  23. More dynamic data structures for geometric set cover with sublinear update time. In Proceedings of the 37th International Symposium on Computational Geometry (SoCG), volume 189 of LIPIcs, pages 25:1–25:14, 2021. doi:10.4230/LIPICS.SOCG.2021.25.
  24. Dynamic geometric connectivity in the plane with constant query time. CoRR, abs/arXiv:2402.05357, 2024. To appear in SoCG 2024. arXiv:2402.05357.
  25. Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmaic amortized time. J. ACM, 48(1):1–12, 2001. doi:10.1145/363647.363652.
  26. Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat objects. J. Algorithms, 46(2):178–189, 2003. doi:10.1016/S0196-6774(02)00294-8.
  27. Timothy M. Chan. Semi-online maintenance of geometric optima and measures. SIAM J. Comput., 32(3):700–716, 2003. doi:10.1137/S0097539702404389.
  28. Timothy M. Chan. Dynamic subgraph connectivity with geometric applications. SIAM J. Comput., 36(3):681–694, 2006. doi:10.1137/S009753970343912X.
  29. Timothy M. Chan. Dynamic coresets. Discret. Comput. Geom., 42(3):469–488, 2009. doi:10.1007/S00454-009-9165-3.
  30. Timothy M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor queries. J. ACM, 57(3):16:1–16:15, 2010. doi:10.1145/1706591.1706596.
  31. Timothy M. Chan. Dynamic generalized closest pair: Revisiting Eppstein’s technique. In Proceedings of the 3rd SIAM Symposium on Simplicity in Algorithms (SOSA), pages 33–37, 2020. doi:10.1137/1.9781611976014.6.
  32. Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. Discret. Comput. Geom., 64(4):1235–1252, 2020. doi:10.1007/S00454-020-00229-5.
  33. Dynamic geometric set cover, revisited. In Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3496–3528, 2022. doi:10.1137/1.9781611977073.139.
  34. Worst-case efficient dynamic geometric independent set. In Proceedings of the 29th Annual European Symposium on Algorithms (ESA), volume 204 of LIPIcs, pages 25:1–25:15, 2021. doi:10.4230/LIPICS.ESA.2021.25.
  35. Maximum flow and minimum-cost flow in almost-linear time. In Proceedings of the 63rd IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 612–623, 2022. doi:10.1109/FOCS54457.2022.00064.
  36. Orthogonal range searching on the RAM, revisited. In Proceedings of the 27th ACM Symposium on Computational Geometry (SoCG), pages 1–10, 2011. doi:10.1145/1998196.1998198.
  37. Dynamic connectivity: Connecting to networks and geometry. SIAM J. Comput., 40(2):333–349, 2011. doi:10.1137/090751670.
  38. Approximating maximum weight matching in near-linear time. In Proceedings of the 51th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 673–682, 2010. doi:10.1109/FOCS.2010.70.
  39. Geometry helps in bottleneck matching and related problems. Algorithmica, 31:1–28, 2001. doi:10.1007/S00453-001-0016-8.
  40. Polynomial-time approximation schemes for geometric intersection graphs. SIAM Journal on Computing, 34(6):1302–1323, 2005. doi:10.1137/S0097539702402676.
  41. David Eppstein. Dynamic Euclidean minimum spanning trees and extrema of binary functions. Discret. Comput. Geom., 13:111–122, 1995. doi:10.1007/BF02574030.
  42. Clique partitions, graph compression and speeding-up algorithms. J. Comput. Syst. Sci., 51(2):261–272, 1995. doi:10.1006/JCSS.1995.1065.
  43. Fully dynamic (1+ε)1𝜀(1+\varepsilon)( 1 + italic_ε )-approximate matchings. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 548–557, 2013. doi:10.1109/FOCS.2013.65.
  44. Sariel Har-Peled. Approximately: Independence implies vertex cover. CoRR, abs/2308.00840, 2023. arXiv:2308.00840.
  45. An n5/2superscript𝑛52n^{5/2}italic_n start_POSTSUPERSCRIPT 5 / 2 end_POSTSUPERSCRIPT algorithm for maximum matchings in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973. doi:10.1137/0202019.
  46. Approximation schemes for covering and packing problems in image processing and VLSI. Journal of the ACM, 32(1):130–136, 1985. doi:10.1145/2455.214106.
  47. Dynamic approximate maximum independent set of intervals, hypercubes and hyperrectangles. In Proceedings of the 36th International Symposium on Computational Geometry (SoCG), volume 164 of LIPIcs, pages 51:1–51:14, 2020. doi:10.4230/LIPICS.SOCG.2020.51.
  48. Approximation algorithms for maximum matchings in geometric intersection graphs. In Proceedings of the 38th International Symposium on Computational Geometry (SoCG), volume 224 of LIPIcs, pages 47:1–47:13, 2022. doi:10.4230/LIPICS.SOCG.2022.47.
  49. Dynamic connectivity in disk graphs. In Proceedings of the 38th International Symposium on Computational Geometry (SoCG), volume 224 of LIPIcs, pages 49:1–49:17, 2022. doi:10.4230/LIPICS.SOCG.2022.49.
  50. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discret. Comput. Geom., 1:59–70, 1986. doi:10.1007/BF02187683.
  51. Online and dynamic algorithms for geometric set cover and hitting set. In Proceedings of the 39th International Symposium on Computational Geometry (SoCG), volume 258 of LIPIcs, pages 46:1–46:17, 2023. doi:10.4230/LIPICS.SOCG.2023.46.
  52. Vertex cover might be hard to approximate to within 2−ε2𝜀2-\varepsilon2 - italic_ε. J. Comput. Syst. Sci., 74(3):335–349, 2008. doi:10.1016/J.JCSS.2007.06.019.
  53. Improved distributed approximate matching. J. ACM, 62(5):38:1–38:17, 2015. doi:10.1145/2786753.
  54. Applications of a planar separator theorem. SIAM J. Comput., 9(3):615–627, 1980. doi:10.1137/0209046.
  55. Dániel Marx. Efficient approximation schemes for geometric problems? In Proceedings of the 13th Annual European Symposium on Algorithms (ESA), volume 3669 of Lecture Notes in Computer Science, pages 448–459. Springer, 2005. doi:10.1007/11561071_41.
  56. Improved results on geometric hitting set problems. Discret. Comput. Geom., 44(4):883–895, 2010. doi:10.1007/S00454-010-9285-9.
  57. Vertex packings: Structural properties and algorithms. Mathematical Programming, 8(1):232–248, 1975.
  58. Maintaining a large matching and a small vertex cover. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), pages 457–464. ACM, 2010. doi:10.1145/1806689.1806753.
  59. Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. J. Comput. Syst. Sci., 23(2):166–204, 1981. doi:10.1016/0022-0000(81)90012-X.
  60. Computational Geometry: An Introduction. Springer, 1985.
  61. Dynamic (1+ε)1𝜀(1+\varepsilon)( 1 + italic_ε )-approximate matchings: A density-sensitive approach. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 712–729, 2016. doi:10.1137/1.9781611974331.CH51.
  62. Shay Solomon. Fully dynamic maximal matching in constant update time. In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 325–334, 2016. doi:10.1109/FOCS.2016.43.
  63. Geometric separator theorems & applications. In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 232–243, 1998. doi:10.1109/SFCS.1998.743449.
  64. Vijay V. Vazirani. A theory of alternating paths and blossoms for proving correctness of the O⁢(V⁢E)𝑂𝑉𝐸O(\sqrt{V}E)italic_O ( square-root start_ARG italic_V end_ARG italic_E ) general graph maximum matching algorithm. Comb., 14(1):71–109, 1994. doi:10.1007/BF01305952.
  65. David Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput., 3(1):103–128, 2007. doi:10.4086/TOC.2007.V003A006.
Citations (3)

Summary

We haven't generated a summary for this paper yet.