Non-standard boundary behaviour in binary mixture models (2407.20162v2)
Abstract: Consider a binary mixture model of the form $F_\theta = (1-\theta)F_0 + \theta F_1$, where $F_0$ is standard Gaussian and $F_1$ is a completely specified heavy-tailed distribution with the same support. For a sample of $n$ independent and identically distributed values $X_i \sim F_\theta$, the maximum likelihood estimator $\hat\theta_n$ is asymptotically normal provided that $0 < \theta < 1$ is an interior point. This paper investigates the large-sample behaviour for boundary points, which is entirely different and strikingly asymmetric for $\theta=0$ and $\theta=1$. The reason for the asymmetry has to do with typical choices such that $F_0$ is an extreme boundary point and $F_1$ is usually not extreme. On the right boundary, well known results on boundary parameter problems are recovered, giving $\lim \mathbb{P}_1(\hat\theta_n < 1)=1/2$. On the left boundary, $\lim\mathbb{P}_0(\hat\theta_n > 0)=1-1/\alpha$, where $1\leq \alpha \leq 2$ indexes the domain of attraction of the density ratio $f_1(X)/f_0(X)$ when $X\sim F_0$. For $\alpha=1$, which is the most important case in practice, we show how the tail behaviour of $F_1$ governs the rate at which $\mathbb{P}_0(\hat\theta_n > 0)$ tends to zero. A new limit theorem for the joint distribution of the sample maximum and sample mean conditional on positivity establishes multiple inferential anomalies. Most notably, given $\hat\theta_n > 0$, the likelihood ratio statistic has a conditional null limit distribution $G\neq\chi2_1$ determined by the joint limit theorem. We show through this route that no advantage is gained by extending the single distribution $F_1$ to the nonparametric composite mixture generated by the same tail-equivalence class.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.