Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Neutrinoless double-beta decay in a finite volume from relativistic effective field theory (2407.19695v3)

Published 29 Jul 2024 in nucl-th and hep-lat

Abstract: The neutrinoless double-beta decay process $nn\rightarrow ppee$ within the light Majorana-exchange scenario is studied using the relativistic pionless effective field theory (EFT) in finite-volume cubic boxes with the periodic boundary conditions. Using the low-energy two-nucleon scattering observables from lattice QCD available at $m_\pi=300$, 450, 510, and 806 MeV, the leading-order $nn\rightarrow ppee$ transition matrix elements are predicted and their volume dependence is investigated. The predictions for the $nn\rightarrow ppee$ transition matrix elements can be directly compared to the lattice QCD calculations of the $nn\rightarrow ppee$ process at the same pion masses. In particular for the matrix element at $m_\pi=806$ MeV, the predictions with relativistic pionless EFT are confronted to the recent first lattice QCD evaluation. Therefore, the present results are expected to play a crucial role in the benchmark between the nuclear EFTs and the upcoming lattice QCD calculations of the $nn\rightarrow pp ee$ process, which would provide a nontrivial test on the predictive power of nuclear EFTs on neutrinoless double-beta decay.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. W. H. Furry, On Transition Probabilities in Double Beta-Disintegration, Phys. Rev. 56, 1184 (1939).
  2. J. Schechter and J. W. F. Valle, Neutrinoless double-β𝛽\betaitalic_β decay in SU(2)×\times×U(1) theories, Phys. Rev. D 25, 2951 (1982).
  3. Y. B. Zel’dovich and M. Y. Khlopov, Study of the neu-trino mass in a double beta-decay, JETP Lett. 34, 141 (1981).
  4. C. E. Aalseth et al. (Majorana Collaboration), Search for Neutrinoless Double-β𝛽\betaitalic_β Decay in Ge76superscriptGe76{}^{76}\mathrm{Ge}start_FLOATSUPERSCRIPT 76 end_FLOATSUPERSCRIPT roman_Ge with the Majorana Demonstrator, Phys. Rev. Lett. 120, 132502 (2018).
  5. D. Q. Adams et al. (CUORE Collaboration), Improved Limit on Neutrinoless Double-Beta Decay in Te130superscriptTe130{}^{130}\mathrm{Te}start_FLOATSUPERSCRIPT 130 end_FLOATSUPERSCRIPT roman_Te with CUORE, Phys. Rev. Lett. 124, 122501 (2020).
  6. M. Agostini et al. (GERDA Collaboration), Final Results of GERDA on the Search for Neutrinoless Double-β𝛽\betaitalic_β Decay, Phys. Rev. Lett. 125, 252502 (2020).
  7. J. B. Albert et al. (EXO-200 Collaboration), Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector, Phys. Rev. Lett. 120, 072701 (2018).
  8. E. Armengaud et al. (CUPID-Mo Collaboration), New Limit for Neutrinoless Double-Beta Decay of Mo100superscriptMo100{}^{100}\mathrm{Mo}start_FLOATSUPERSCRIPT 100 end_FLOATSUPERSCRIPT roman_Mo from the CUPID-Mo Experiment, Phys. Rev. Lett. 126, 181802 (2021).
  9. R. Arnold et al. (NEMO-3 Collaboration), Search for Neutrinoless Quadruple-β𝛽\betaitalic_β Decay of Nd150superscriptNd150{}^{150}\mathrm{Nd}start_FLOATSUPERSCRIPT 150 end_FLOATSUPERSCRIPT roman_Nd with the NEMO-3 Detector, Phys. Rev. Lett. 119, 041801 (2017).
  10. A. Gando et al. (KamLAND-Zen Collaboration), Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117, 082503 (2016).
  11. W. H. Dai et al. (CDEX Collaboration), Search for neutrinoless double-beta decay of Ge76superscriptGe76{}^{76}\mathrm{Ge}start_FLOATSUPERSCRIPT 76 end_FLOATSUPERSCRIPT roman_Ge with a natural broad energy germanium detector, Phys. Rev. D 106, 032012 (2022).
  12. J. Engel and J. Menéndez, Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review, Rep. Prog. Phys. 80, 046301 (2017).
  13. S. Weinberg, Nuclear forces from chiral lagrangians, Phys. Lett. B 251, 288 (1990).
  14. S. Weinberg, Effective chiral lagrangians for nucleon-pion interactions and nuclear forces, Nucl. Phys. B 363, 3 (1991).
  15. D. B. Kaplan, M. J. Savage, and M. B. Wise, A new expansion for nucleon-nucleon interactions, Physi. Lett. B 424, 390 (1998a).
  16. D. B. Kaplan, M. J. Savage, and M. B. Wise, Two-nucleon systems from effective field theory, Nucl. Phys. B 534, 329 (1998b).
  17. U. van Kolck, Effective field theory of short-range forces, Nucl. Phys. A 645, 273 (1999).
  18. P. Bedaque and U. van Kolck, Nucleon-deuteron scattering from an effective field theory, Phys. Lett. B 428, 221 (1998).
  19. P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Effective theory for neutron-deuteron scattering: Energy dependence, Phys. Rev. C 58, R641 (1998).
  20. J.-W. Chen, G. Rupak, and M. J. Savage, Nucleon-nucleon effective field theory without pions, Nucl. Phys. A 653, 386 (1999).
  21. E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Modern theory of nuclear forces, Rev. Mod. Phys. 81, 1773 (2009).
  22. R. Machleidt and D. R. Entem, Chiral effective field theory and nuclear forces, Phys. Rep. 503, 1 (2011).
  23. H.-W. Hammer, S. König, and U. van Kolck, Nuclear effective field theory: Status and perspectives, Rev. Mod. Phys. 92, 025004 (2020).
  24. G. Prézeau, M. Ramsey-Musolf, and P. Vogel, Neutrinoless double β𝛽\betaitalic_β decay and effective field theory, Phys. Rev. D 68, 034016 (2003).
  25. Y. Yang and P. Zhao, Relativistic model-free prediction for neutrinoless double beta decay at leading order, Phys. Lett. B 855, 138782 (2024).
  26. J. Menéndez, D. Gazit, and A. Schwenk, Chiral Two-Body Currents in Nuclei: Gamow-Teller Transitions and Neutrinoless Double-Beta Decay, Phys. Rev. Lett. 107, 062501 (2011).
  27. L.-J. Wang, J. Engel, and J. M. Yao, Quenching of nuclear matrix elements for 0⁢ν⁢β⁢β0𝜈𝛽𝛽0\nu\beta\beta0 italic_ν italic_β italic_β decay by chiral two-body currents, Phys. Rev. C 98, 031301 (2018).
  28. L. Jokiniemi, P. Soriano, and J. Menéndez, Impact of the leading-order short-range nuclear matrix element on the neutrinoless double-beta decay of medium-mass and heavy nuclei, Phys. Lett. B 823, 136720 (2021).
  29. S. Weinberg, Baryon- and Lepton-Nonconserving Processes, Phys. Rev. Lett. 43, 1566 (1979).
  30. E. Epelbaum and J. Gegelia, Weinberg’s approach to nucleon-nucleon scattering revisited, Phys. Lett. B 716, 338 (2012).
  31. Y. L. Yang and P. W. Zhao, A consistent description of the relativistic effects and three-body interactions in atomic nuclei, Phys. Lett. B 835, 137587 (2022).
  32. R. A. Briceõ, Z. Davoudi, and T. C. Luu, Nuclear reactions from lattice QCD, J. Phys. G 42, 023101 (2015).
  33. X.-Y. Tuo, X. Feng, and L.-C. Jin, Long-distance contributions to neutrinoless double beta decay π−→π+⁢e⁢e→superscript𝜋superscript𝜋𝑒𝑒{\pi}^{-}\rightarrow{\pi}^{+}eeitalic_π start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e italic_e, Phys. Rev. D 100, 094511 (2019).
  34. W. Detmold and D. J. Murphy, Neutrinoless double beta decay from lattice QCD: The long-distance π−→π+⁢e−⁢e−→superscript𝜋superscript𝜋superscript𝑒superscript𝑒\pi^{-}\rightarrow\pi^{+}e^{-}e^{-}italic_π start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT amplitude, arXiv:2004.07404  (2020).
  35. Z. Davoudi and S. V. Kadam, Path from Lattice QCD to the Short-Distance Contribution to 0⁢ν⁢β⁢β0𝜈𝛽𝛽0\nu\beta\beta0 italic_ν italic_β italic_β Decay with a Light Majorana Neutrino, Phys. Rev. Lett. 126, 152003 (2021).
  36. Z. Davoudi and S. V. Kadam, Extraction of low-energy constants of single- and double-β𝛽\betaitalic_β decays from lattice QCD: A sensitivity analysis, Phys. Rev. D 105, 094502 (2022).
  37. L. Lellouch and M. Lüscher, Weak transition matrix elements from finite-volume correlation functions, Commun. Math. Phys. 219, 31 (2001).
  38. W. Detmold and M. J. Savage, Electroweak matrix elements in the two-nucleon sector from lattice QCD, Nucl. Phys. A 743, 170 (2004).
  39. H. B. Meyer, Lattice QCD and the Timelike Pion Form Factor, Phys. Rev. Lett. 107, 072002 (2011).
  40. R. A. Briceño and Z. Davoudi, Moving multichannel systems in a finite volume with application to proton-proton fusion, Phys. Rev. D 88, 094507 (2013).
  41. R. A. Briceño, M. T. Hansen, and A. Walker-Loud, Multichannel 1→2→121\rightarrow 21 → 2 transition amplitudes in a finite volume, Phys. Rev. D 91, 034501 (2015).
  42. R. A. Briceño and M. T. Hansen, Multichannel 0→2→020\rightarrow 20 → 2 and 1→2→121\rightarrow 21 → 2 transition amplitudes for arbitrary spin particles in a finite volume, Phys. Rev. D 92, 074509 (2015).
  43. Z. Davoudi and S. V. Kadam, Two-neutrino double-β𝛽\betaitalic_β decay in pionless effective field theory from a Euclidean finite-volume correlation function, Phys. Rev. D 102, 114521 (2020).
  44. N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett. 10, 531 (1963).
  45. M. Kobayashi and T. Maskawa, CP-Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49, 652 (1973).
  46. Y. Xiao, L.-S. Geng, and X.-L. Ren, Covariant nucleon-nucleon contact Lagrangian up to order 𝒪⁢(q4)𝒪superscript𝑞4\mathcal{O}({q}^{4})caligraphic_O ( italic_q start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ), Phys. Rev. C 99, 024004 (2019).
  47. P. F. Bedaque and U. van Kolck, EFFECTIVE FIELD THEORY FOR FEW-NUCLEON SYSTEMS*, Ann. Rev. Nucl. Part. Sci. 52, 339 (2002).
  48. M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories, Commun. Math. Phys. 105, 153 (1986).
  49. M. Lüscher, Two-particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B 354, 531 (1991).
  50. Y. R. Kwon and F. Tabakin, Hadronic atoms in momentum space, Phys. Rev. C 18, 932 (1978).
  51. R. H. Landau, Coupled bound and continuum eigenstates in momentum space, Phys. Rev. C 27, 2191 (1983).
  52. Lande, private communication in Refs. [89] and [88],  .
  53. I. Ivanov and J. Mitroy, Treatment of the Coulomb singularity in momentum space calculations, Comp. Phys. Commun. 134, 317 (2001).
  54. S. Tan, Three-boson problem at low energy and implications for dilute bose-einstein condensates, Phys. Rev. A 78, 013636 (2008).
  55. S. R. Beane and M. J. Savage, Two-particle elastic scattering in a finite volume including QED, Phys. Rev. D 90, 074511 (2014).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com