Computational symplectic topology and symmetric orbits in the restricted three-body problem (2407.19159v3)
Abstract: In this paper we propose a computational approach to proving the Birkhoff conjecture on the restricted three-body problem, which asserts the existence of a disk-like global surface of section. Birkhoff had conjectured this surface of section as a tool to prove existence of a direct periodic orbit. Using techniques from validated numerics we prove the existence of an approximately circular direct orbit for a wide range of mass parameters and Jacobi energies. We also provide methods to rigorously compute the Conley-Zehnder index of periodic Hamiltonian orbits using computational tools, thus giving some initial steps for developing computational Floer homology and providing the means to prove the Birkhoff conjecture via symplectic topology. We apply this method to various symmetric orbits in the restricted three-body problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.