Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

GraphBPE: Molecular Graphs Meet Byte-Pair Encoding (2407.19039v1)

Published 26 Jul 2024 in cs.LG, cs.AI, physics.chem-ph, and q-bio.BM

Abstract: With the increasing attention to molecular machine learning, various innovations have been made in designing better models or proposing more comprehensive benchmarks. However, less is studied on the data preprocessing schedule for molecular graphs, where a different view of the molecular graph could potentially boost the model's performance. Inspired by the Byte-Pair Encoding (BPE) algorithm, a subword tokenization method popularly adopted in Natural Language Processing, we propose GraphBPE, which tokenizes a molecular graph into different substructures and acts as a preprocessing schedule independent of the model architectures. Our experiments on 3 graph-level classification and 3 graph-level regression datasets show that data preprocessing could boost the performance of models for molecular graphs, and GraphBPE is effective for small classification datasets and it performs on par with other tokenization methods across different model architectures.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.