Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning production functions for supply chains with graph neural networks (2407.18772v2)

Published 26 Jul 2024 in cs.LG, cs.CY, and cs.SI

Abstract: The global economy relies on the flow of goods over supply chain networks, with nodes as firms and edges as transactions between firms. While we may observe these external transactions, they are governed by unseen production functions, which determine how firms internally transform the input products they receive into output products that they sell. In this setting, it can be extremely valuable to infer these production functions, to improve supply chain visibility and to forecast future transactions more accurately. However, existing graph neural networks (GNNs) cannot capture these hidden relationships between nodes' inputs and outputs. Here, we introduce a new class of models for this setting by combining temporal GNNs with a novel inventory module, which learns production functions via attention weights and a special loss function. We evaluate our models extensively on real supply chains data and data generated from our new open-source simulator, SupplySim. Our models successfully infer production functions, outperforming the strongest baseline by 6%-50% (across datasets), and forecast future transactions, outperforming the strongest baseline by 11%-62%

Summary

We haven't generated a summary for this paper yet.