Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Mpox Detection Advanced: Rapid Epidemic Response Through Synthetic Data (2407.17762v1)

Published 25 Jul 2024 in cs.CV and cs.AI

Abstract: Rapid development of disease detection models using computer vision is crucial in responding to medical emergencies, such as epidemics or bioterrorism events. Traditional data collection methods are often too slow in these scenarios, requiring innovative approaches for quick, reliable model generation from minimal data. Our study introduces a novel approach by constructing a comprehensive computer vision model to detect Mpox lesions using only synthetic data. Initially, these models generated a diverse set of synthetic images representing Mpox lesions on various body parts (face, back, chest, leg, neck, arm) across different skin tones as defined by the Fitzpatrick scale (fair, brown, dark skin). Subsequently, we trained and tested a vision model with this synthetic dataset to evaluate the diffusion models' efficacy in producing high-quality training data and its impact on the vision model's medical image recognition performance. The results were promising; the vision model achieved a 97% accuracy rate, with 96% precision and recall for Mpox cases, and similarly high metrics for normal and other skin disorder cases, demonstrating its ability to correctly identify true positives and minimize false positives. The model achieved an F1-Score of 96% for Mpox cases and 98% for normal and other skin disorders, reflecting a balanced precision-recall relationship, thus ensuring reliability and robustness in its predictions. Our proposed SynthVision methodology indicates the potential to develop accurate computer vision models with minimal data input for future medical emergencies.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets