Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Robust Maximum $L_q$-Likelihood Covariance Estimation for Replicated Spatial Data (2407.17592v2)

Published 24 Jul 2024 in stat.ME and stat.CO

Abstract: Parameter estimation with the maximum $L_q$-likelihood estimator (ML$q$E) is an alternative to the maximum likelihood estimator (MLE) that considers the $q$-th power of the likelihood values for some $q<1$. In this method, extreme values are down-weighted because of their lower likelihood values, which yields robust estimates. In this work, we study the properties of the ML$q$E for spatial data with replicates. We investigate the asymptotic properties of the ML$q$E for Gaussian random fields with a Mat\'ern covariance function, and carry out simulation studies to investigate the numerical performance of the ML$q$E. We show that it can provide more robust and stable estimation results when some of the replicates in the spatial data contain outliers. In addition, we develop a mechanism to find the optimal choice of the hyper-parameter $q$ for the ML$q$E. The robustness of our approach is further verified on a United States precipitation dataset. Compared with other robust methods for spatial data, our proposal is more intuitive and easier to understand, yet it performs well when dealing with datasets containing outliers.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.