Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MetaLoco: Universal Quadrupedal Locomotion with Meta-Reinforcement Learning and Motion Imitation (2407.17502v2)

Published 5 Jul 2024 in cs.RO

Abstract: This work presents a meta-reinforcement learning approach to develop a universal locomotion control policy capable of zero-shot generalization across diverse quadrupedal platforms. The proposed method trains an RL agent equipped with a memory unit to imitate reference motions using a small set of procedurally generated quadruped robots. Through comprehensive simulation and real-world hardware experiments, we demonstrate the efficacy of our approach in achieving locomotion across various robots without requiring robot-specific fine-tuning. Furthermore, we highlight the critical role of the memory unit in enabling generalization, facilitating rapid adaptation to changes in the robot properties, and improving sample efficiency.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.