Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning Assisted Inertial Dead Reckoning and Fusion (2407.16387v1)

Published 23 Jul 2024 in cs.RO

Abstract: The interest in mobile platforms across a variety of applications has increased significantly in recent years. One of the reasons is the ability to achieve accurate navigation by using low-cost sensors. To this end, inertial sensors are fused with global navigation satellite systems (GNSS) signals. GNSS outages during platform operation can result in pure inertial navigation, causing the navigation solution to drift. In such situations, periodic trajectories with dedicated algorithms were suggested to mitigate the drift. With periodic dynamics, inertial deep learning approaches can capture the motion more accurately and provide accurate dead-reckoning for drones and mobile robots. In this paper, we propose approaches to extend deep learning-assisted inertial sensing and fusion capabilities during periodic motion. We begin by demonstrating that fusion between GNSS and inertial sensors in periodic trajectories achieves better accuracy compared to straight-line trajectories. Next, we propose an empowered network architecture to accurately regress the change in distance of the platform. Utilizing this network, we drive a hybrid approach for a neural-inertial fusion filter. Finally, we utilize this approach for situations when GNSS is available and show its benefits. A dataset of 337 minutes of data collected from inertial sensors mounted on a mobile robot and a quadrotor is used to evaluate our approaches.

Summary

We haven't generated a summary for this paper yet.