Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Hierarchical Machine Learning Classification of Parkinsonian Disorders using Saccadic Eye Movements: A Development and Validation Study (2407.16063v2)

Published 22 Jul 2024 in q-bio.QM and q-bio.NC

Abstract: Discriminating between Parkinson's Disease (PD) and Progressive Supranuclear Palsy (PSP) is difficult due to overlapping symptoms, especially early on. Saccades (rapid conjugate eye movements between fixation points) are affected by both diseases but conventional saccade analyses exhibit group level differences only. We hypothesized analyzing entire saccade raw time series waveforms would permit superior individual level discrimination between PD, PSP, and healthy controls (HC). 13,309 saccadic eye movements from 127 participants were analyzed using a novel, calibration-free waveform analysis and hierarchical machine learning framework. Individual saccades were classified based on which trained model could reconstruct each waveform with minimum error, indicating the most likely condition. A hierarchical classifier then predicted overall status (recently diagnosed and medication-naive 'de novo' PD, 'established' PD on antiparkinsonian medication, PSP, and healthy controls) by combining each participant's saccade results. This approach substantially outperformed conventional metrics, achieving high AUROCs distinguishing de novo PD from PSP (0.92-0.97), de novo PD from HC (0.72-0.89), and PSP from HC (0.90-0.95), while the conventional model showed limited performance (AUROC range: 0.45-0.75). This calibration-free waveform analysis sets a new standard for precise saccadic classification of PD, PSP, and HC, increasing potential for clinical adoption, remote monitoring, and screening.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com