Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

Inferring turbulent velocity and temperature fields and their statistics from Lagrangian velocity measurements using physics-informed Kolmogorov-Arnold Networks (2407.15727v2)

Published 22 Jul 2024 in physics.flu-dyn, cs.LG, and physics.comp-ph

Abstract: We propose the Artificial Intelligence Velocimetry-Thermometry (AIVT) method to infer hidden temperature fields from experimental turbulent velocity data. This physics-informed machine learning method enables us to infer continuous temperature fields using only sparse velocity data, hence eliminating the need for direct temperature measurements. Specifically, AIVT is based on physics-informed Kolmogorov-Arnold Networks (not neural networks) and is trained by optimizing a combined loss function that minimizes the residuals of the velocity data, boundary conditions, and the governing equations. We apply AIVT to a unique set of experimental volumetric and simultaneous temperature and velocity data of Rayleigh-B\'enard convection (RBC) that we acquired by combining Particle Image Thermometry and Lagrangian Particle Tracking. This allows us to compare AIVT predictions and measurements directly. We demonstrate that we can reconstruct and infer continuous and instantaneous velocity and temperature fields from sparse experimental data at a fidelity comparable to direct numerical simulations (DNS) of turbulence. This, in turn, enables us to compute important quantities for quantifying turbulence, such as fluctuations, viscous and thermal dissipation, and QR distribution. This paradigm shift in processing experimental data using AIVT to infer turbulent fields at DNS-level fidelity is a promising avenue in breaking the current deadlock of quantitative understanding of turbulence at high Reynolds numbers, where DNS is computationally infeasible.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. doi:10.1038/s41467-022-30667-z.
  2. doi:10.1103/PRXEnergy.2.043001.
  3. doi:10.5194/wes-1-221-2016. URL https://wes.copernicus.org/articles/1/221/2016/
  4. doi:10.1103/PhysRevLett.110.138701. URL https://link.aps.org/doi/10.1103/PhysRevLett.110.138701
  5. doi:10.1140/epje/i2012-12058-1. URL http://link.springer.com/10.1140/epje/i2012-12058-1
  6. doi:10.1073/pnas.1922794117.
  7. doi:10.1145/3581784.3627039.
  8. doi:10.1007/s00348-016-2173-1.
  9. doi:10.1088/1361-6501/ad16d1.
  10. doi:10.1007/s00348-016-2157-1. URL http://link.springer.com/10.1007/s00348-016-2157-1
  11. doi:10.1017/S0022112009990528.
  12. doi:10.1103/PhysRevE.96.023105. URL https://link.aps.org/doi/10.1103/PhysRevE.96.023105
  13. doi:10.1103/PhysRevE.57.5494. URL https://link.aps.org/doi/10.1103/PhysRevE.57.5494
  14. doi:10.1017/jfm.2013.73. URL https://www.cambridge.org/core/product/identifier/S0022112013000736/type/journal_article
  15. doi:10.1017/jfm.2012.392. URL https://www.cambridge.org/core/product/identifier/S0022112012003928/type/journal_article
  16. doi:10.1063/1.4878669.
  17. doi:10.1103/PhysRevFluids.9.074602. URL https://link.aps.org/doi/10.1103/PhysRevFluids.9.074602
  18. doi:10.1146/annurev-fluid-121021-031431.
  19. doi:10.1146/annurev-fluid-122109-160708.
  20. doi:10.1017/jfm.2024.164. URL https://www.cambridge.org/core/product/identifier/S0022112024001642/type/journal_article
  21. doi:10.1017/jfm.2013.74.
Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com