Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual Adjunction Between $Ω$-Automata and Wilke Algebra Quotients (2407.14115v2)

Published 19 Jul 2024 in cs.FL

Abstract: $\Omega$-automata and Wilke algebras are formalisms for characterising $\omega$-regular languages via their ultimately periodic words. $\Omega$-automata read finite representations of ultimately periodic words, called lassos, and they are a subclass of lasso automata. We introduce lasso semigroups as a generalisation of Wilke algebras that mirrors how lasso automata generalise $\Omega$-automata, and we show that finite lasso semigroups characterise regular lasso languages. We then show a dual adjunction between lasso automata and quotients of the free lasso semigroup with a recognising set, and as our main result we show that this dual adjunction restricts to one between $\Omega$-automata and quotients of the free Wilke algebra with a recognising set.

Summary

We haven't generated a summary for this paper yet.