Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symbolic Automata: $ω$-Regularity Modulo Theories (2310.02393v1)

Published 3 Oct 2023 in cs.FL and cs.DS

Abstract: Symbolic automata are finite state automata that support potentially infinite alphabets, such as the set of rational numbers, generally applied to regular expressions/languages over finite words. In symbolic automata (or automata modulo theories), an alphabet is represented by an effective Boolean algebra, supported by a decision procedure for satisfiability. Regular languages over infinite words (so called $\omega$-regular languages) have a rich history paralleling that of regular languages over finite words, with well known applications to model checking via B\"uchi automata and temporal logics. We generalize symbolic automata to support $\omega$-regular languages via symbolic transition terms and symbolic derivatives, bringing together a variety of classic automata and logics in a unified framework that provides all the necessary ingredients to support symbolic model checking modulo $A$, $NBW_A$. In particular, we define: (1) alternating B\"uchi automata modulo $A$, $ABW_A$ as well (non-alternating) non-deterministic B\"uchi automata modulo $A$, $NBW_A$; (2) an alternation elimination algorithm that incrementally constructs an $NBW_A$ from an $ABW_A$, and can also be used for constructing the product of two $NBW_A$'s; (3) a definition of linear temporal logic (LTL) modulo $A$ that generalizes Vardi's construction of alternating B\"uchi automata from LTL, using (2) to go from LTL modulo $A$ to $NBW_A$ via $ABW_A$. Finally, we present a combination of LTL modulo $A$ with extended regular expressions modulo $A$ that generalizes the Property Specification Language (PSL). Our combination allows regex complement, that is not supported in PSL but can be supported naturally by using symbolic transition terms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.