Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Bayesian Inference and the Principle of Maximum Entropy (2407.13029v1)

Published 17 Jul 2024 in stat.ME

Abstract: Bayes' theorem incorporates distinct types of information through the likelihood and prior. Direct observations of state variables enter the likelihood and modify posterior probabilities through consistent updating. Information in terms of expected values of state variables modify posterior probabilities by constraining prior probabilities to be consistent with the information. Constraints on the prior can be exact, limiting hypothetical frequency distributions to only those that satisfy the constraints, or be approximate, allowing residual deviations from the exact constraint to some degree of tolerance. When the model parameters and constraint tolerances are known, posterior probability follows directly from Bayes' theorem. When parameters and tolerances are unknown a prior for them must be specified. When the system is close to statistical equilibrium the computation of posterior probabilities is simplified due to the concentration of the prior on the maximum entropy hypothesis. The relationship between maximum entropy reasoning and Bayes' theorem from this point of view is that maximum entropy reasoning is a special case of Bayesian inference with a constrained entropy-favoring prior.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube