Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vectoring Languages (2407.11766v1)

Published 16 Jul 2024 in cs.CL and cs.AI

Abstract: Recent breakthroughs in LLMs (LLM) have stirred up global attention, and the research has been accelerating non-stop since then. Philosophers and psychologists have also been researching the structure of language for decades, but they are having a hard time finding a theory that directly benefits from the breakthroughs of LLMs. In this article, we propose a novel structure of language that reflects well on the mechanisms behind LLMs and go on to show that this structure is also better at capturing the diverse nature of language compared to previous methods. An analogy of linear algebra is adapted to strengthen the basis of this perspective. We further argue about the difference between this perspective and the design philosophy for current LLMs. Lastly, we discuss how this perspective can lead us to research directions that may accelerate the improvements of science fastest.

Summary

We haven't generated a summary for this paper yet.