Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 88 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 220 tok/s Pro
2000 character limit reached

Disentangling Representations through Multi-task Learning (2407.11249v3)

Published 15 Jul 2024 in cs.LG, cs.AI, q-bio.NC, and stat.ML

Abstract: Intelligent perception and interaction with the world hinges on internal representations that capture its underlying structure (''disentangled'' or ''abstract'' representations). Disentangled representations serve as world models, isolating latent factors of variation in the world along approximately orthogonal directions, thus facilitating feature-based generalization. We provide experimental and theoretical results guaranteeing the emergence of disentangled representations in agents that optimally solve multi-task evidence accumulation classification tasks, canonical in the neuroscience literature. The key conceptual finding is that, by producing accurate multi-task classification estimates, a system implicitly represents a set of coordinates specifying a disentangled representation of the underlying latent state of the data it receives. The theory provides conditions for the emergence of these representations in terms of noise, number of tasks, and evidence accumulation time. We experimentally validate these predictions in RNNs trained to multi-task, which learn disentangled representations in the form of continuous attractors, leading to zero-shot out-of-distribution (OOD) generalization in predicting latent factors. We demonstrate the robustness of our framework across autoregressive architectures, decision boundary geometries and in tasks requiring classification confidence estimation. We find that transformers are particularly suited for disentangling representations, which might explain their unique world understanding abilities. Overall, our framework establishes a formal link between competence at multiple tasks and the formation of disentangled, interpretable world models in both biological and artificial systems, and helps explain why ANNs often arrive at human-interpretable concepts, and how they both may acquire exceptional zero-shot generalization capabilities.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run custom paper prompts using GPT-5 on this paper.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.