Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimizing PLM-Based Few-Shot Intent Detectors (2407.09943v2)

Published 13 Jul 2024 in cs.CL

Abstract: Recent research has demonstrated the feasibility of training efficient intent detectors based on pre-trained LLM~(PLM) with limited labeled data. However, deploying these detectors in resource-constrained environments such as mobile devices poses challenges due to their large sizes. In this work, we aim to address this issue by exploring techniques to minimize the size of PLM-based intent detectors trained with few-shot data. Specifically, we utilize LLMs for data augmentation, employ a cutting-edge model compression method for knowledge distillation, and devise a vocabulary pruning mechanism called V-Prune. Through these approaches, we successfully achieve a compression ratio of 21 in model memory usage, including both Transformer and the vocabulary, while maintaining almost identical performance levels on four real-world benchmarks.

Summary

We haven't generated a summary for this paper yet.