Papers
Topics
Authors
Recent
Search
2000 character limit reached

CodeCSE: A Simple Multilingual Model for Code and Comment Sentence Embeddings

Published 8 Jul 2024 in cs.SE | (2407.06360v1)

Abstract: Pretrained LLMs for code token embeddings are used in code search, code clone detection, and other code-related tasks. Similarly, code function embeddings are useful in such tasks. However, there are no out-of-box models for function embeddings in the current literature. So, this paper proposes CodeCSE, a contrastive learning model that learns embeddings for functions and their descriptions in one space. We evaluated CodeCSE using code search. CodeCSE's multi-lingual zero-shot approach is as efficient as the models finetuned from GraphCodeBERT for specific languages. CodeCSE is open source at https://github.com/emu-se/codecse and the pretrained model is available at the HuggingFace public hub: https://huggingface.co/sjiang1/codecse

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.