Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Bidding Games with Charging (2407.06288v1)

Published 8 Jul 2024 in cs.GT

Abstract: Graph games lie at the algorithmic core of many automated design problems in computer science. These are games usually played between two players on a given graph, where the players keep moving a token along the edges according to pre-determined rules, and the winner is decided based on the infinite path traversed by the token from a given initial position. In bidding games, the players initially get some monetary budgets which they need to use to bid for the privilege of moving the token at each step. Each round of bidding affects the players' available budgets, which is the only form of update that the budgets experience. We introduce bidding games with charging where the players can additionally improve their budgets during the game by collecting vertex-dependent charges. Unlike traditional bidding games (where all charges are zero), bidding games with charging allow non-trivial recurrent behaviors. We show that the central property of traditional bidding games generalizes to bidding games with charging: For each vertex there exists a threshold ratio, which is the necessary and sufficient fraction of the total budget for winning the game from that vertex. While the thresholds of traditional bidding games correspond to unique fixed points of linear systems of equations, in games with charging, these fixed points are no longer unique. This significantly complicates the proof of existence and the algorithmic computation of thresholds for infinite-duration objectives. We also provide the lower complexity bounds for computing thresholds for Rabin and Streett objectives, which are the first known lower bounds in any form of bidding games (with or without charging), and we solve the following repair problem for safety and reachability games that have unsatisfiable objectives: Can we distribute a given amount of charge to the players in a way such that the objective can be satisfied?

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.