Improving the trainability of VQE on NISQ computers for solving portfolio optimization using convex interpolation (2407.05589v1)
Abstract: Solving combinatorial optimization problems using variational quantum algorithms (VQAs) represents one of the most promising applications in the NISQ era. However, the limited trainability of VQAs could hinder their scalability to large problem sizes. In this paper, we improve the trainability of variational quantum eigensolver (VQE) by utilizing convex interpolation to solve portfolio optimization. The idea is inspired by the observation that the Dicke state possesses an inherent clustering property. Consequently, the energy of a state with a larger Hamming distance from the ground state intuitively results in a greater energy gap away from the ground state energy in the overall distribution trend. Based on convex interpolation, the location of the ground state can be evaluated by learning the property of a small subset of basis states in the Hilbert space. This enlightens naturally the proposals of the strategies of close-to-solution initialization, regular cost function landscape, and recursive ansatz equilibrium partition. The successfully implementation of a $40$-qubit experiment using only $10$ superconducting qubits demonstrates the effectiveness of our proposals. Furthermore, the quantum inspiration has also spurred the development of a prototype greedy algorithm. Extensive numerical simulations indicate that the hybridization of VQE and greedy algorithms achieves a mutual complementarity, combining the advantages of both global and local optimization methods. Our proposals can be extended to improve the trainability for solving other large-scale combinatorial optimization problems that are widely used in real applications, paving the way to unleash quantum advantages of NISQ computers in the near future.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.