Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Support Vector Based Anomaly Detection in Federated Learning (2407.03920v1)

Published 4 Jul 2024 in cs.LG

Abstract: Anomaly detection plays a crucial role in various domains, from cybersecurity to industrial systems. However, traditional centralized approaches often encounter challenges related to data privacy. In this context, Federated Learning emerges as a promising solution. This work introduces two innovative algorithms--Ensemble SVDD and Support Vector Election--that leverage Support Vector Machines for anomaly detection in a federated setting. In comparison with the Neural Networks typically used in within Federated Learning, these new algorithms emerge as potential alternatives, as they can operate effectively with small datasets and incur lower computational costs. The novel algorithms are tested in various distributed system configurations, yielding promising initial results that pave the way for further investigation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.