Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topological Separation of Vortices (2407.03384v3)

Published 3 Jul 2024 in physics.flu-dyn and cs.CE

Abstract: Vortices and their analysis play a critical role in the understanding of complex phenomena in turbulent flows. Traditional vortex extraction methods, notably region-based techniques, often overlook the entanglement phenomenon, resulting in the inclusion of multiple vortices within a single extracted region. Their separation is necessary for quantifying different types of vortices and their statistics. In this study, we propose a novel vortex separation method that extends the conventional contour tree-based segmentation approach with an additional step termed "layering". Upon extracting a vortical region using specified vortex criteria (e.g., $\lambda_2$), we initially establish topological segmentation based on the contour tree, followed by the layering process to allocate appropriate segmentation IDs to unsegmented cells, thus separating individual vortices within the region. However, these regions may still suffer from inaccurate splits, which we address statistically by leveraging the continuity of vorticity lines across the split boundaries. Our findings demonstrate a significant improvement in both the separation of vortices and the mitigation of inaccurate splits compared to prior methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. Detection, quantification, and tracking of vortices using streamline geometry. Computers & Graphics, 24(3):333–341, 2000. doi: 10 . 1016/S0097-8493(00)00029-7
  2. Identifying turbulent structures through topological segmentation. Communications in Applied Mathematics and Computational Science, 11(1):37–53, 2016. doi: 10 . 2140/camcos . 2016 . 11 . 37
  3. Computing contour trees in all dimensions. Computational Geometry, 24(2):75–94, 2003. Special Issue on the Fourth CGC Workshop on Computational Geometry. doi: 10 . 1016/S0925-7721(02)00093-7
  4. A general classification of three‐dimensional flow fields. Physics of Fluids A: Fluid Dynamics, 2(5):765–777, 05 1990. doi: 10 . 1063/1 . 857730
  5. H. Edelsbrunner and J. L. Harer. Computational topology: an introduction. American Mathematical Society, 2010.
  6. A web services accessible database of turbulent channel flow and its use for testing a new integral wall model for les. Journal of Turbulence, 17(2):181–215, 2016. doi: 10 . 7281/T10K26QW
  7. G. HALLER. An objective definition of a vortex. Journal of Fluid Mechanics, 525:1–26, 2005. doi: 10 . 1017/S0022112004002526
  8. G. Haller. Lagrangian coherent structures. Annual Review of Fluid Mechanics, 47(1):137–162, 2015. doi: 10 . 1146/annurev-fluid-010313-141322
  9. J. Hunt. Vorticity and vortex dynamics in complex turbulent flows. Transactions of the Canadian Society for Mechanical Engineering, 11(1):21–35, 1987. doi: 10 . 1139/tcsme-1987-0004
  10. J. Jeong and F. Hussain. On the identification of a vortex. Journal of Fluid Mechanics, 285:69–94, 1995. doi: 10 . 1017/S0022112095000462
  11. M. Li and D. Yang. Direct numerical simulation and statistical analysis of stress-driven turbulent Couette flow with a free-slip boundary. Physics of Fluids, 31(8), 08 2019. 085113. doi: 10 . 1063/1 . 5099650
  12. Rortex—A new vortex vector definition and vorticity tensor and vector decompositions. Physics of Fluids, 30(3):035103, 03 2018. doi: 10 . 1063/1 . 5023001
  13. A visualization framework for multi-scale coherent structures in taylor-couette turbulence. IEEE Transactions on Visualization and Computer Graphics, 27(2):902–912, 2021. doi: 10 . 1109/TVCG . 2020 . 3028892
  14. A. Okubo. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Research and Oceanographic Abstracts, 17(3):445–454, 1970. doi: 10 . 1016/0011-7471(70)90059-8
  15. R. Peikert and M. Roth. The “parallel vectors” operator: a vector field visualization primitive. In VIS ’99: Proceedings of the conference on Visualization ’99, pp. 263–270. IEEE Computer Society Press, Los Alamitos, CA, USA, 1999. doi: 10 . 1109/VISUAL . 1999 . 809896
  16. Visualization tools for vorticity transport analysis in incompressible flow. IEEE Transactions on Visualization and Computer Graphics, 12(5):949–956, 2006. doi: 10 . 1109/TVCG . 2006 . 199
  17. Topology-preserving λ𝜆\lambdaitalic_λ2-based vortex core line detection for flow visualization. Computer Graphics Forum, 27(3):1023–1030, 2008. doi: 10 . 1111/j . 1467-8659 . 2008 . 01238 . x
  18. Interactive comparison of scalar fields based on largest contours with applications to flow visualization. IEEE Transactions on Visualization and Computer Graphics, 14(6):1475–1482, 2008. doi: 10 . 1109/TVCG . 2008 . 143
  19. T. Weinkauf and H. Theisel. Streak lines as tangent curves of a derived vector field. IEEE Transactions on Visualization and Computer Graphics, 16(6):1225–1234, 2010. doi: 10 . 1109/TVCG . 2010 . 198
  20. J. Weiss. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena, 48(2):273–294, 1991. doi: 10 . 1016/0167-2789(91)90088-Q
  21. Topological flow structures in a mathematical model for rotation-mediated cell aggregation. In Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and Applications, pp. 193–204. Springer, Berlin, Heidelberg, 2011. doi: 10 . 1007/978-3-642-15014-2_16
  22. A. Zafar and G. Chen. Hairpin vortex identification using template fitting on vortex corelines. [Poster presented at IEEE Visualization 2022].
  23. Extract and characterize hairpin vortices in turbulent flows. IEEE Transactions on Visualization and Computer Graphics, 30(1):716–726, 2024. doi: 10 . 1109/TVCG . 2023 . 3326603
  24. Mechanisms for generating coherent packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 387:353–396, 1999. doi: 10 . 1017/S002211209900467X

Summary

We haven't generated a summary for this paper yet.