Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VortexViz: Finding Vortex Boundaries by Learning from Particle Trajectories (2404.01352v1)

Published 1 Apr 2024 in physics.flu-dyn, cs.AI, cs.CV, and cs.GR

Abstract: Vortices are studied in various scientific disciplines, offering insights into fluid flow behavior. Visualizing the boundary of vortices is crucial for understanding flow phenomena and detecting flow irregularities. This paper addresses the challenge of accurately extracting vortex boundaries using deep learning techniques. While existing methods primarily train on velocity components, we propose a novel approach incorporating particle trajectories (streamlines or pathlines) into the learning process. By leveraging the regional/local characteristics of the flow field captured by streamlines or pathlines, our methodology aims to enhance the accuracy of vortex boundary extraction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. T. Gerz, F. Holzäpfel, and D. Darracq, “Commercial aircraft wake vortices,” Progress in Aerospace Sciences, vol. 38, no. 3, pp. 181–208, 2002.
  2. C. Breitsamter, “Wake vortex characteristics of transport aircraft,” Progress in Aerospace Sciences, vol. 47, no. 2, pp. 89–134, 2011.
  3. S. C. Rennich and S. K. Lele, “Method for accelerating the destruction of aircraft wake vortices,” Journal of Aircraft, vol. 36, no. 2, pp. 398–404, 1999.
  4. R. Lguensat, M. Sun, R. Fablet, P. Tandeo, E. Mason, and G. Chen, “EddyNet: A deep neural network for pixel-wise classification of oceanic eddies,” in IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium.   IEEE, 2018, pp. 1764–1767.
  5. S. Williams, M. Hecht, M. Petersen, R. Strelitz, M. Maltrud, J. Ahrens, M. Hlawitschka, and B. Hamann, “Visualization and analysis of eddies in a global ocean simulation,” in Computer graphics forum, vol. 30, no. 3.   Wiley Online Library, 2011, pp. 991–1000.
  6. T. Wang, H. He, D. Fan, B. Fu, and S. Dong, “Global ocean mesoscale vortex recognition based on DeeplabV3plus model,” in IOP Conference Series: Earth and Environmental Science, vol. 671, no. 1.   IOP Publishing, 2021, p. 012001.
  7. G. Dvali, F. Kühnel, and M. Zantedeschi, “Vortices in black holes,” Physical Review Letters, vol. 129, no. 6, p. 061302, 2022.
  8. F. Lima, A. Moreira, and C. Almeida, “Properties of black hole vortex in Einstein’s gravity,” The European Physical Journal Plus, vol. 138, no. 5, p. 429, 2023.
  9. F. Dowker, R. Gregory, and J. Traschen, “Euclidean black-hole vortices,” Physical Review D, vol. 45, no. 8, p. 2762, 1992.
  10. A. Tonomura, H. Kasai, O. Kamimura, T. Matsuda, K. Harada, J. Shimoyama, K. Kishio, and K. Kitazawa, “Motion of vortices in superconductors,” Nature, vol. 397, no. 6717, pp. 308–309, 1999.
  11. J. Bardeen and M. Stephen, “Theory of the motion of vortices in superconductors,” Physical Review, vol. 140, no. 4A, p. A1197, 1965.
  12. S. J. Chapman and G. Richardson, “Motion of vortices in type II superconductors,” SIAM Journal on Applied Mathematics, vol. 55, no. 5, pp. 1275–1296, 1995.
  13. C. Jung, T. Tél, and E. Ziemniak, “Application of scattering chaos to particle transport in a hydrodynamical flow,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 3, no. 4, pp. 555–568, 1993. [Online]. Available: https://doi.org/10.1063/1.165960
  14. G. Haller, A. Hadjighasem, M. Farazmand, and F. Huhn, “Defining coherent vortices objectively from the vorticity,” Journal of Fluid Mechanics, vol. 795, pp. 136–173, 2016.
  15. M. Jankun-Kelly, M. Jiang, D. Thompson, and R. Machiraju, “Vortex visualization for practical engineering applications,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 5, pp. 957–964, 2006.
  16. M. Berenjkoub, G. Chen, and T. Günther, “Vortex boundary identification using convolutional neural network,” in 2020 IEEE Visualization Conference (VIS).   IEEE, 2020, pp. 261–265.
  17. T. Maxworthy, “Some experimental studies of vortex rings,” Journal of Fluid Mechanics, vol. 81, no. 3, pp. 465–495, 1977.
  18. H. J. Lugt, “The dilemma of defining a vortex,” in Recent developments in theoretical and experimental fluid mechanics: Compressible and incompressible flows.   Springer, 1979, pp. 309–321.
  19. L. Deng, Y. Wang, Y. Liu, F. Wang, S. Li, and J. Liu, “A CNN-based vortex identification method,” Journal of Visualization, vol. 22, pp. 65–78, 2019.
  20. L. Deng, W. Bao, Y. Wang, Z. Yang, D. Zhao, F. Wang, C. Bi, and Y. Guo, “Vortex-U-Net: An efficient and effective vortex detection approach based on U-Net structure,” Applied Soft Computing, vol. 115, p. 108229, 2022.
  21. Y. Wang, L. Deng, Z. Yang, D. Zhao, and F. Wang, “A rapid vortex identification method using fully convolutional segmentation network,” The Visual Computer, vol. 37, pp. 261–273, 2021.
  22. B. Kashir, M. Ragone, A. Ramasubramanian, V. Yurkiv, and F. Mashayek, “Application of fully convolutional neural networks for feature extraction in fluid flow,” Journal of Visualization, vol. 24, pp. 771–785, 2021.
  23. Q. Wang, Z. Chen, Y. Wang, and H. Qu, “A survey on ML4VIS: Applying machine learning advances to data visualization,” IEEE transactions on visualization and computer graphics, vol. 28, no. 12, pp. 5134–5153, 2021.
  24. C. Liu, R. Jiang, D. Wei, C. Yang, Y. Li, F. Wang, and X. Yuan, “Deep learning approaches in flow visualization,” Advances in Aerodynamics, vol. 4, no. 1, pp. 1–14, 2022.
  25. C. Wang and J. Han, “DL4SciVis: A state-of-the-art survey on deep learning for scientific visualization,” IEEE Transactions on Visualization and Computer Graphics, 2022.
  26. A. de Silva, I. Mori, G. Dusek, J. Davis, and A. Pang, “Automated rip current detection with region based convolutional neural networks,” Coastal Engineering, vol. 166, p. 103859, 2021.
  27. I. Mori, A. de Silva, G. Dusek, J. Davis, and A. Pang, “Flow-based rip current detection and visualization,” IEEE Access, vol. 10, pp. 6483–6495, 2022.
  28. A. de Silva, M. Zhao, D. Stewart, F. Khan, G. Dusek, J. Davis, and A. Pang, “RipViz: Finding Rip Currents by Learning Pathline Behavior,” IEEE Transactions on Visualization and Computer Graphics, pp. 1–13, 2023.
  29. B. Kim and T. Günther, “Robust reference frame extraction from unsteady 2d vector fields with convolutional neural networks,” in Computer Graphics Forum, vol. 38.   Wiley Online Library, 2019, pp. 285–295.
  30. M. Han, S. Sane, and C. R. Johnson, “Exploratory Lagrangian-based particle tracing using deep learning,” Journal of Flow Visualization and Image Processing, vol. 29, no. 3, 2022.
  31. J. Hunt, “Vorticity and vortex dynamics in complex turbulent flows,” Transactions of the Canadian Society for Mechanical Engineering, vol. 11, no. 1, pp. 21–35, 1987.
  32. C. Liu, Y. Wang, Y. Yang, and Z. Duan, “New omega vortex identification method,” Science China Physics, Mechanics & Astronomy, vol. 59, pp. 1–9, 2016.
  33. J. Jeong and F. Hussain, “On the identification of a vortex,” Journal of fluid mechanics, vol. 285, pp. 69–94, 1995.
  34. M. S. Chong, A. E. Perry, and B. J. Cantwell, “A general classification of three-dimensional flow fields,” Physics of Fluids A: Fluid Dynamics, vol. 2, no. 5, pp. 765–777, 1990.
  35. I. A. Sadarjoen, F. H. Post, B. Ma, D. C. Banks, and H.-G. Pagendarm, “Selective visualization of vortices in hydrodynamic flows,” in Proceedings Visualization’98 (Cat. No. 98CB36276).   IEEE, 1998, pp. 419–422.
  36. G. Haller, “An objective definition of a vortex,” Journal of fluid mechanics, vol. 525, pp. 1–26, 2005.
  37. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  38. J. Han, J. Tao, and C. Wang, “FlowNet: A deep learning framework for clustering and selection of streamlines and stream surfaces,” IEEE transactions on visualization and computer graphics, vol. 26, no. 4, pp. 1732–1744, 2018.
  39. J. C. Butcher, “A history of Runge-Kutta methods,” Applied numerical mathematics, vol. 20, no. 3, pp. 247–260, 1996.
  40. F. Chollet et al., “Keras,” https://keras.io, 2015.
  41. S. C. Shadden, F. Lekien, and J. E. Marsden, “Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows,” Physica D: Nonlinear Phenomena, vol. 212, no. 3-4, pp. 271–304, 2005.
  42. S. Popinet, “Free computational fluid dynamics,” ClusterWorld, vol. 2, no. 6, 2004. [Online]. Available: http://gfs.sf.net/
  43. T. Günther, M. Gross, and H. Theisel, “Generic objective vortices for flow visualization,” ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 36, no. 4, pp. 141:1–141:11, 2017.
  44. T. Weinkauf and H. Theisel, “Streak Lines as Tangent Curves of a Derived Vector Field,” IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE Scientific Visualization), vol. 16, no. 6, pp. 1225–1234, Nov 2010.
  45. I. Baeza Rojo and T. Günther, “Vector field topology of time-dependent flows in a steady reference frame,” IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE Scientific Visualization), 2019.
  46. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–626.
  47. NOAASatellites, “Dorian Timelapse,” Sep. 2019. [Online]. Available: https://www.youtube.com/watch?v=e3g7NpCkZMM
  48. R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and D. Weiskopf, “The state of the art in flow visualization: Dense and texture-based techniques,” in Computer Graphics Forum, vol. 23, no. 2.   Wiley Online Library, 2004, pp. 203–221.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets