Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Multi-Scale Frequency-Enhanced Deep D-bar Method for Electrical Impedance Tomography (2407.03335v2)

Published 12 May 2024 in math.NA, cs.CV, cs.NA, and eess.IV

Abstract: The regularized D-bar method is a popular method for solving Electrical Impedance Tomography (EIT) problems due to its efficiency and simplicity. It utilizes the low-pass truncated scattering data in the non-linear Fourier domain to solve the associated D-bar integral equations, yielding a smooth conductivity approximation. However, the D-bar reconstruction often presents low contrast and resolution due to the absence of accurate high-frequency information and the ill-posedness of the problem. In this paper, we propose a deep learning-based supervised approach for real-time EIT reconstruction. Based on the D-bar method, we propose to utilize both multi-scale frequency enhancement and spatial consistency for a high image quality reconstruction. Additionally, we propose a fixed-point iteration for solving discrete D-bar systems on GPUs for fast computation. Numerical results are performed for both the continuum model and complete electrode model simulation on KIT4 and ACT4 datasets to demonstrate notable improvements in absolute EIT imaging quality.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com