Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Computation in 2D Absolute EIT (a-EIT) Using D-bar Methods with the `exp' Approximation (1712.00379v2)

Published 1 Dec 2017 in math.AP and cs.NA

Abstract: Objective: Absolute images have important applications in medical Electrical Impedance Tomography (EIT) imaging, but the traditional minimization and statistical based computations are very sensitive to modeling errors and noise. In this paper, it is demonstrated that D-bar reconstruction methods for absolute EIT are robust to such errors. Approach: The effects of errors in domain shape and electrode placement on absolute images computed with 2D D-bar reconstruction algorithms are studied on experimental data. Main Results: It is demonstrated with tank data from several EIT systems that these methods are quite robust to such modeling errors, and furthermore the artefacts arising from such modeling errors are similar to those occurring in classic time-difference EIT imaging. Significance: This study is promising for clinical applications where absolute EIT images are desirable, but previously thought impossible.

Citations (21)

Summary

We haven't generated a summary for this paper yet.