Policy-guided Monte Carlo on general state spaces: Application to glass-forming mixtures (2407.03275v2)
Abstract: Policy-guided Monte Carlo is an adaptive method to simulate classical interacting systems. It adjusts the proposal distribution of the Metropolis-Hastings algorithm to maximize the sampling efficiency, using a formalism inspired by reinforcement learning. In this work, we first extend the policy-guided method to deal with a general state space, comprising, for instance, both discrete and continuous degrees of freedom, and then apply it to a few paradigmatic models of glass-forming mixtures. We assess the efficiency of a set of physically inspired moves whose proposal distributions are optimized through on-policy learning. Compared to conventional Monte Carlo methods, the optimized proposals are two orders of magnitude faster for an additive soft sphere mixture but yield a much more limited speed-up for the well-studied Kob-Andersen model. We discuss the current limitations of the method and suggest possible ways to improve it.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.