Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Aspect-Based Sentiment Analysis Techniques: A Comparative Study (2407.02834v3)

Published 3 Jul 2024 in cs.CL

Abstract: Since the dawn of the digitalisation era, customer feedback and online reviews are unequivocally major sources of insights for businesses. Consequently, conducting comparative analyses of such sources has become the de facto modus operandi of any business that wishes to give itself a competitive edge over its peers and improve customer loyalty. Sentiment analysis is one such method instrumental in gauging public interest, exposing market trends, and analysing competitors. While traditional sentiment analysis focuses on overall sentiment, as the needs advance with time, it has become important to explore public opinions and sentiments on various specific subjects, products and services mentioned in the reviews on a finer-granular level. To this end, Aspect-based Sentiment Analysis (ABSA), supported by advances in AI techniques which have contributed to a paradigm shift from simple word-level analysis to tone and context-aware analyses, focuses on identifying specific aspects within the text and determining the sentiment associated with each aspect. In this study, we compare several deep-NN methods for ABSA on two benchmark datasets (Restaurant14 and Laptop-14) and found that FAST LSA obtains the best overall results of 87.6% and 82.6% accuracy but does not pass LSA+DeBERTa which reports 90.33% and 86.21% accuracy respectively.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.