Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Sectoral Profitability in the Indian Stock Market Using Deep Learning (2407.01572v1)

Published 28 May 2024 in q-fin.CP, cs.LG, and q-fin.PM

Abstract: This paper explores using a deep learning Long Short-Term Memory (LSTM) model for accurate stock price prediction and its implications for portfolio design. Despite the efficient market hypothesis suggesting that predicting stock prices is impossible, recent research has shown the potential of advanced algorithms and predictive models. The study builds upon existing literature on stock price prediction methods, emphasizing the shift toward machine learning and deep learning approaches. Using historical stock prices of 180 stocks across 18 sectors listed on the NSE, India, the LSTM model predicts future prices. These predictions guide buy/sell decisions for each stock and analyze sector profitability. The study's main contributions are threefold: introducing an optimized LSTM model for robust portfolio design, utilizing LSTM predictions for buy/sell transactions, and insights into sector profitability and volatility. Results demonstrate the efficacy of the LSTM model in accurately predicting stock prices and informing investment decisions. By comparing sector profitability and prediction accuracy, the work provides valuable insights into the dynamics of the current financial markets in India.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com